AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

Overview

AutoML for Image Semantic Segmentation

Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-performs that of the original paper.

Following the popular trend of modern CNN architectures having a two level hierarchy. Auto-Deeplab forms a dual level search space, searching for optimal network and cell architecture. network and cell level search space

Auto-Deeplab acheives a better performance while minimizing the size of the final model. model results

Our results:79.8 miou with Autodeeplab-M, train for 4000epochs and batch_size=16, about 800K iters

Our Search implementation currently achieves BETTER results than that of the authors in the original AutoDeeplab paper. Awesome!

Search results from the auto-deeplab paper which achieve 35% after 40 epochs of searching:
paper mIOU
VS our search results which acheive 37% after 40 epochs of searching:
our mIOU:


Training Proceedure

All together there are 3 stages:

  1. Architecture Search - Here you will train one large relaxed architecture that is meant to represent many discreet smaller architectures woven together.

  2. Decode - Once you've finished the architecture search, load your large relaxed architecture and decode it to find your optimal architecture.

  3. Re-train - Once you have a decoded and poses a final description of your optimal model, use it to build and train your new optimal model



Hardware Requirement

  • For architecture search, you need at least an 15G GPU, or two 11G gpus(in this way, global pooling in aspp is banned, not recommended)

  • For retraining autodeeplab-M or autodeeplab-S, you need at least n more than 11G gpus to re-train with batch size 2n without distributed

  • For retraining autodeeplab-L, you need at least n more than 11G gpus to re-train with batch size 2n with distributed

Architecture Search

Begin Architecture Search

Start Training

CUDA_VISIBLE_DEVICES=0 python train_autodeeplab.py --dataset cityscapes

Resume Training

CUDA_VISIBLE_DEVICES=0 python train_autodeeplab.py --dataset cityscapes --resume /AutoDeeplabpath/checkpoint.pth.tar

Re-train

Now that you're done training the search algorithm, it's time to decode the search space and find your new optimal architecture. After that just build your new model and begin training it

Load and Decode

CUDA_VISIBLE_DEVICES=0 python decode_autodeeplab.py --dataset cityscapes --resume /AutoDeeplabpath/checkpoint.pth.tar

Retrain

Train without distributed

python train.py

Train with distributed

CUDA_VISIBLE_DEVICES=0,1,2,···,n python -m torch.distributed.launch --nproc_per_node=n train_distributed.py  

Result models

We provided models after search and retrain [baidu drive (passwd: xm9z)] [google drive]

Requirements

  • Pytorch version 1.1

  • Python 3

  • tensorboardX

  • torchvision

  • pycocotools

  • tqdm

  • numpy

  • pandas

  • apex

References

[1] : Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation

[2] : Thanks for jfzhang's deeplab v3+ implemention of pytorch

[3] : Thanks for MenghaoGuo's autodeeplab model implemention

[4] : Thanks for CoinCheung's deeplab v3+ implemention of pytorch

[5] : Thanks for chenxi's deeplab v3 implemention of pytorch

TODO

  • Retrain our search model

  • adding support for other datasets(e.g. VOC, ADE20K, COCO and so on.)

Owner
AI Necromancer
WeChat: BuffaloNoam; Line: buffalonoam; WhatsApp: +972524226459
AI Necromancer
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang

BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat

VITA 40 Dec 30, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022