基于DouZero定制AI实战欢乐斗地主

Overview

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战

Logo

  • 本项目基于DouZero
  • 环境配置请移步项目DouZero
  • 模型默认为WP,更换模型请修改start.py中的模型路径
  • 运行main.py即可
  • SL (baselines/sl/): 基于人类数据进行深度学习的预训练模型
  • DouZero-ADP (baselines/douzero_ADP/): 以平均分数差异(Average Difference Points, ADP)为目标训练的Douzero智能体
  • DouZero-WP (baselines/douzero_WP/): 以胜率(Winning Percentage, WP)为目标训练的Douzero智能体

说明

  • 将玩家角色设置为AI,需开局时手动输入玩家角色、初始手牌、三张底牌
  • 每轮手动输入其他两位玩家出的牌,AI给出出牌建议以及预计胜率
  • 暂未设计可视化界面,正考虑通过截屏自动识别开局手牌。
  • 欢乐斗地主窗口模式最大化运行,屏幕分辨率1920x1080。由于设计像素级操作,运行出错请检查截图区域坐标(位于MyPyQT_Form类中的__init__函数内)
  • 窗口移至右下角,避免遮挡手牌,历史牌,底牌区域。

使用步骤

  1. 确认环境正常,等待手牌出现、底牌出现、地主角色确认后,点击开始,耗时几秒完成识别。
  2. 窗口内显示识别结果,地主角色使用淡红色标出。识别完成自动开始记录出牌。
  3. 观察AI建议的出牌,在游戏中手动选择并打出。
  4. 游戏结束后弹出对话框提示输赢。
  5. 识别错误或无反应可通过结束按钮停止本局。至于游戏,就自己手动打完吧。

潜在Bug

  • 王炸时出牌特效时间较长,有一定几率导致只能识别出一个王。

鸣谢

  • 本项目基于DouZero
  • 借鉴了cardRecorder项目的部分代码以及模板图片,用于识别扑克牌

相关链接

Comments
  • 请问这是我的设置问题吗

    请问这是我的设置问题吗

    我首先按照要求安装了所需依赖,进入对局点击开始后提示输出

    等待下家出牌 等待下家出牌 等待下家出牌

    下家出牌: 44333 Traceback (most recent call last): File "c:\Users\11984\Downloads\DouZero_For_HappyDouDiZhu-master\main.py", line 170, in init_cards self.start() File "c:\Users\11984\Downloads\DouZero_For_HappyDouDiZhu-master\main.py", line 226, in start
    self.env.step(self.user_position, self.other_played_cards_env) TypeError: step() takes 1 positional argument but 3 were given

    以上这样的报错 图形界面卡死,图片附上

    report

    opened by jiahao2333 4
  • 开始以后闪退

    开始以后闪退

    看记录好像能识别出手牌,麻烦帮忙看看是为什么

    F:\Desktop\DouZero_For_HappyDouDiZhu-2.0>python main.py {'three_landlord_cards': [9, 8, 3], 'landlord_up': [17, 17, 14, 14, 13, 13, 12, 12, 10, 9, 8, 7, 7, 6, 5, 4, 3], 'landlord': [9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 14, 14, 17, 17, 20, 30], 'landlord_down': [3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8]} Traceback (most recent call last): File "C:\Users\liule\AppData\Local\Programs\Python\Python38\lib\site-packages\git_init_.py", line 83, in refresh() File "C:\Users\liule\AppData\Local\Programs\Python\Python38\lib\site-packages\git_init_.py", line 73, in refresh if not Git.refresh(path=path): File "C:\Users\liule\AppData\Local\Programs\Python\Python38\lib\site-packages\git\cmd.py", line 287, in refresh raise ImportError(err) ImportError: Bad git executable. The git executable must be specified in one of the following ways: - be included in your $PATH - be set via $GIT_PYTHON_GIT_EXECUTABLE - explicitly set via git.refresh()

    All git commands will error until this is rectified.

    This initial warning can be silenced or aggravated in the future by setting the $GIT_PYTHON_REFRESH environment variable. Use one of the following values: - quiet|q|silence|s|none|n|0: for no warning or exception - warn|w|warning|1: for a printed warning - error|e|raise|r|2: for a raised exception

    Example: export GIT_PYTHON_REFRESH=quiet

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "main.py", line 164, in init_cards ai_players[1] = DeepAgent(self.user_position, self.card_play_model_path_dict[self.user_position]) File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\evaluation\deep_agent.py", line 25, in init self.model = load_model(position, model_path) File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\evaluation\deep_agent.py", line 7, in load_model from douzero.dmc.models import model_dict File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\dmc_init.py", line 1, in from .dmc import train File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\dmc\dmc.py", line 12, in from .file_writer import FileWriter File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\dmc\file_writer.py", line 25, in import git File "C:\Users\liule\AppData\Local\Programs\Python\Python38\lib\site-packages\git_init.py", line 85, in raise ImportError('Failed to initialize: {0}'.format(exc)) ImportError: Failed to initialize: Bad git executable. The git executable must be specified in one of the following ways: - be included in your $PATH - be set via $GIT_PYTHON_GIT_EXECUTABLE - explicitly set via git.refresh()

    All git commands will error until this is rectified.

    This initial warning can be silenced or aggravated in the future by setting the $GIT_PYTHON_REFRESH environment variable. Use one of the following values: - quiet|q|silence|s|none|n|0: for no warning or exception - warn|w|warning|1: for a printed warning - error|e|raise|r|2: for a raised exception

    Example: export GIT_PYTHON_REFRESH=quiet

    opened by 0xbba 3
  • 区域坐标能否解答下?

    区域坐标能否解答下?

    self.MyHandCardsPos = (414, 804, 1041, 59)  # 我的截图区域
            self.LPlayedCardsPos = (530, 470, 380, 160)  # 左边截图区域
            self.RPlayedCardsPos = (1010, 470, 380, 160)  # 右边截图区域
            self.LandlordFlagPos = [(1320, 300, 110, 140), (320, 720, 110, 140), (500, 300, 110, 140)]  # 地主标志截图区域(右-我-左)
            self.ThreeLandlordCardsPos = (817, 36, 287, 136)      # 地主底牌截图区域,resize成349x168
    

    我怎么用坐标拾取工具对比了下发现完全不对

    opened by daofeng2015 1
  • 由于分辨率导致的牌面识别瓶颈改进意见

    由于分辨率导致的牌面识别瓶颈改进意见

    使用win32gui库对游戏窗口进行坐标(0,0)、尺寸(默认尺寸)自动固定,如下: win32gui.SetWindowPos(hwnd, win32con.HWND_NOTOPMOST, 0, 0, 1440, 838, win32con.SWP_SHOWWINDOW)

    然后在此基础上制作配套pics,可极大降低由分辨率问题引起的各类找图问题。

    opened by null119 0
  • pos_duge报错

    pos_duge报错

    [ WARN:[email protected]] global D:\a\opencv-python\opencv-python\opencv\modules\imgcodecs\src\loadsave.cpp (239) cv::findDecoder imread_('QQ截图20220507102631.png'): can't open/read file: check file path/integrity Traceback (most recent call last): File "G:/python/code_py/douzero_huanledoudizhu/DouZero_For_HappyDouDiZhu/pos_debug.py", line 25, in cv2.imshow("test", img) cv2.error: OpenCV(4.5.5) D:\a\opencv-python\opencv-python\opencv\modules\imgproc\src\color.cpp:182: error: (-215:Assertion failed) !_src.empty() in function 'cv::cvtColor' 想问一下这是什么情况

    opened by fengmianchen 0
Releases(v2.0)
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Hongwen Zhang 450 Dec 28, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022