基于DouZero定制AI实战欢乐斗地主

Overview

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战

Logo

  • 本项目基于DouZero
  • 环境配置请移步项目DouZero
  • 模型默认为WP,更换模型请修改start.py中的模型路径
  • 运行main.py即可
  • SL (baselines/sl/): 基于人类数据进行深度学习的预训练模型
  • DouZero-ADP (baselines/douzero_ADP/): 以平均分数差异(Average Difference Points, ADP)为目标训练的Douzero智能体
  • DouZero-WP (baselines/douzero_WP/): 以胜率(Winning Percentage, WP)为目标训练的Douzero智能体

说明

  • 将玩家角色设置为AI,需开局时手动输入玩家角色、初始手牌、三张底牌
  • 每轮手动输入其他两位玩家出的牌,AI给出出牌建议以及预计胜率
  • 暂未设计可视化界面,正考虑通过截屏自动识别开局手牌。
  • 欢乐斗地主窗口模式最大化运行,屏幕分辨率1920x1080。由于设计像素级操作,运行出错请检查截图区域坐标(位于MyPyQT_Form类中的__init__函数内)
  • 窗口移至右下角,避免遮挡手牌,历史牌,底牌区域。

使用步骤

  1. 确认环境正常,等待手牌出现、底牌出现、地主角色确认后,点击开始,耗时几秒完成识别。
  2. 窗口内显示识别结果,地主角色使用淡红色标出。识别完成自动开始记录出牌。
  3. 观察AI建议的出牌,在游戏中手动选择并打出。
  4. 游戏结束后弹出对话框提示输赢。
  5. 识别错误或无反应可通过结束按钮停止本局。至于游戏,就自己手动打完吧。

潜在Bug

  • 王炸时出牌特效时间较长,有一定几率导致只能识别出一个王。

鸣谢

  • 本项目基于DouZero
  • 借鉴了cardRecorder项目的部分代码以及模板图片,用于识别扑克牌

相关链接

Comments
  • 请问这是我的设置问题吗

    请问这是我的设置问题吗

    我首先按照要求安装了所需依赖,进入对局点击开始后提示输出

    等待下家出牌 等待下家出牌 等待下家出牌

    下家出牌: 44333 Traceback (most recent call last): File "c:\Users\11984\Downloads\DouZero_For_HappyDouDiZhu-master\main.py", line 170, in init_cards self.start() File "c:\Users\11984\Downloads\DouZero_For_HappyDouDiZhu-master\main.py", line 226, in start
    self.env.step(self.user_position, self.other_played_cards_env) TypeError: step() takes 1 positional argument but 3 were given

    以上这样的报错 图形界面卡死,图片附上

    report

    opened by jiahao2333 4
  • 开始以后闪退

    开始以后闪退

    看记录好像能识别出手牌,麻烦帮忙看看是为什么

    F:\Desktop\DouZero_For_HappyDouDiZhu-2.0>python main.py {'three_landlord_cards': [9, 8, 3], 'landlord_up': [17, 17, 14, 14, 13, 13, 12, 12, 10, 9, 8, 7, 7, 6, 5, 4, 3], 'landlord': [9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 14, 14, 17, 17, 20, 30], 'landlord_down': [3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8]} Traceback (most recent call last): File "C:\Users\liule\AppData\Local\Programs\Python\Python38\lib\site-packages\git_init_.py", line 83, in refresh() File "C:\Users\liule\AppData\Local\Programs\Python\Python38\lib\site-packages\git_init_.py", line 73, in refresh if not Git.refresh(path=path): File "C:\Users\liule\AppData\Local\Programs\Python\Python38\lib\site-packages\git\cmd.py", line 287, in refresh raise ImportError(err) ImportError: Bad git executable. The git executable must be specified in one of the following ways: - be included in your $PATH - be set via $GIT_PYTHON_GIT_EXECUTABLE - explicitly set via git.refresh()

    All git commands will error until this is rectified.

    This initial warning can be silenced or aggravated in the future by setting the $GIT_PYTHON_REFRESH environment variable. Use one of the following values: - quiet|q|silence|s|none|n|0: for no warning or exception - warn|w|warning|1: for a printed warning - error|e|raise|r|2: for a raised exception

    Example: export GIT_PYTHON_REFRESH=quiet

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "main.py", line 164, in init_cards ai_players[1] = DeepAgent(self.user_position, self.card_play_model_path_dict[self.user_position]) File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\evaluation\deep_agent.py", line 25, in init self.model = load_model(position, model_path) File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\evaluation\deep_agent.py", line 7, in load_model from douzero.dmc.models import model_dict File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\dmc_init.py", line 1, in from .dmc import train File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\dmc\dmc.py", line 12, in from .file_writer import FileWriter File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\dmc\file_writer.py", line 25, in import git File "C:\Users\liule\AppData\Local\Programs\Python\Python38\lib\site-packages\git_init.py", line 85, in raise ImportError('Failed to initialize: {0}'.format(exc)) ImportError: Failed to initialize: Bad git executable. The git executable must be specified in one of the following ways: - be included in your $PATH - be set via $GIT_PYTHON_GIT_EXECUTABLE - explicitly set via git.refresh()

    All git commands will error until this is rectified.

    This initial warning can be silenced or aggravated in the future by setting the $GIT_PYTHON_REFRESH environment variable. Use one of the following values: - quiet|q|silence|s|none|n|0: for no warning or exception - warn|w|warning|1: for a printed warning - error|e|raise|r|2: for a raised exception

    Example: export GIT_PYTHON_REFRESH=quiet

    opened by 0xbba 3
  • 区域坐标能否解答下?

    区域坐标能否解答下?

    self.MyHandCardsPos = (414, 804, 1041, 59)  # 我的截图区域
            self.LPlayedCardsPos = (530, 470, 380, 160)  # 左边截图区域
            self.RPlayedCardsPos = (1010, 470, 380, 160)  # 右边截图区域
            self.LandlordFlagPos = [(1320, 300, 110, 140), (320, 720, 110, 140), (500, 300, 110, 140)]  # 地主标志截图区域(右-我-左)
            self.ThreeLandlordCardsPos = (817, 36, 287, 136)      # 地主底牌截图区域,resize成349x168
    

    我怎么用坐标拾取工具对比了下发现完全不对

    opened by daofeng2015 1
  • 由于分辨率导致的牌面识别瓶颈改进意见

    由于分辨率导致的牌面识别瓶颈改进意见

    使用win32gui库对游戏窗口进行坐标(0,0)、尺寸(默认尺寸)自动固定,如下: win32gui.SetWindowPos(hwnd, win32con.HWND_NOTOPMOST, 0, 0, 1440, 838, win32con.SWP_SHOWWINDOW)

    然后在此基础上制作配套pics,可极大降低由分辨率问题引起的各类找图问题。

    opened by null119 0
  • pos_duge报错

    pos_duge报错

    [ WARN:[email protected]] global D:\a\opencv-python\opencv-python\opencv\modules\imgcodecs\src\loadsave.cpp (239) cv::findDecoder imread_('QQ截图20220507102631.png'): can't open/read file: check file path/integrity Traceback (most recent call last): File "G:/python/code_py/douzero_huanledoudizhu/DouZero_For_HappyDouDiZhu/pos_debug.py", line 25, in cv2.imshow("test", img) cv2.error: OpenCV(4.5.5) D:\a\opencv-python\opencv-python\opencv\modules\imgproc\src\color.cpp:182: error: (-215:Assertion failed) !_src.empty() in function 'cv::cvtColor' 想问一下这是什么情况

    opened by fengmianchen 0
Releases(v2.0)
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Omnimatte in PyTorch This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effect

Erika Lu 728 Dec 28, 2022
paper list in the area of reinforcenment learning for recommendation systems

paper list in the area of reinforcenment learning for recommendation systems

HenryZhao 23 Jun 09, 2022
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022