ICLR2021 (Under Review)

Related tags

Deep LearningSelfTime
Overview

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning

This repository contains the official PyTorch implementation of:

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning.

motivation

Abstract: Self-supervised learning achieves superior performance in many domains by extracting useful representations from the unlabeled data. However, most of traditional self-supervised methods mainly focus on exploring the inter-sample structure while less efforts have been concentrated on the underlying intra-temporal structure, which is important for time series data. In this paper, we present SelfTime: a general Self-supervised Time series representation learning framework, by exploring the inter-sample relation and intra-temporal relation of time series to learn the underlying structure feature on the unlabeled time series. Specifically, we first generate the inter-sample relation by sampling positive and negative samples of a given anchor sample, and intra-temporal relation by sampling time pieces from this anchor. Then, based on the sampled relation, a shared feature extraction backbone combined with two separate relation reasoning heads are employed to quantify the relationships of the sample pairs for inter-sample relation reasoning, and the relationships of the time piece pairs for intra-temporal relation reasoning, respectively. Finally, the useful representations of time series are extracted from the backbone under the supervision of relation reasoning heads. Experimental results on multiple real-world time series datasets for time series classification task demonstrate the effectiveness of the proposed method.

SelfTime

Requirements

  • Python 3.6 or 3.7
  • PyTorch version 1.4

Run Model Training and Evaluation

Self-supervised Pretraining

InterSample:

python train_ssl.py --dataset_name CricketX --model_name InterSample

IntraTemporal:

python train_ssl.py --dataset_name CricketX --model_name IntraTemporal

SelfTime:

python train_ssl.py --dataset_name CricketX --model_name SelfTime

Linear Evaluation

InterSample:

python test_linear.py --dataset_name CricketX --model_name InterSample

IntraTemporal:

python test_linear.py --dataset_name CricketX --model_name IntraTemporal

SelfTime:

python test_linear.py --dataset_name CricketX --model_name SelfTime

Supervised Training and Test

python train_test_supervised.py --dataset_name CricketX --model_name SupCE

Check Results

After runing model training and evaluation, the checkpoints of the trained model are saved in the local [ckpt] directory, the training logs are saved in the local [log] directory, and all experimental results are saved in the local [results] directory.

Cite

If you make use of this code in your own work, please cite our paper.

@inproceedings{
anonymous2021selfsupervised,
title={Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning},
author={Haoyi Fan, Fengbin Zhang, Yue Gao},
booktitle={Submitted to International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=qFQTP00Q0kp},
note={under review}
}
Owner
Haoyi Fan
Ph.D student at HRBUST
Haoyi Fan
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
Self-Supervised Contrastive Learning of Music Spectrograms

Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect

27 Dec 10, 2022
Namish Khanna 40 Oct 11, 2022
A hybrid framework (neural mass model + ML) for SC-to-FC prediction

The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass

Yilin Liu 1 Jan 26, 2022
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

STARS Laboratory 5 Dec 08, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022