ICLR2021 (Under Review)

Related tags

Deep LearningSelfTime
Overview

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning

This repository contains the official PyTorch implementation of:

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning.

motivation

Abstract: Self-supervised learning achieves superior performance in many domains by extracting useful representations from the unlabeled data. However, most of traditional self-supervised methods mainly focus on exploring the inter-sample structure while less efforts have been concentrated on the underlying intra-temporal structure, which is important for time series data. In this paper, we present SelfTime: a general Self-supervised Time series representation learning framework, by exploring the inter-sample relation and intra-temporal relation of time series to learn the underlying structure feature on the unlabeled time series. Specifically, we first generate the inter-sample relation by sampling positive and negative samples of a given anchor sample, and intra-temporal relation by sampling time pieces from this anchor. Then, based on the sampled relation, a shared feature extraction backbone combined with two separate relation reasoning heads are employed to quantify the relationships of the sample pairs for inter-sample relation reasoning, and the relationships of the time piece pairs for intra-temporal relation reasoning, respectively. Finally, the useful representations of time series are extracted from the backbone under the supervision of relation reasoning heads. Experimental results on multiple real-world time series datasets for time series classification task demonstrate the effectiveness of the proposed method.

SelfTime

Requirements

  • Python 3.6 or 3.7
  • PyTorch version 1.4

Run Model Training and Evaluation

Self-supervised Pretraining

InterSample:

python train_ssl.py --dataset_name CricketX --model_name InterSample

IntraTemporal:

python train_ssl.py --dataset_name CricketX --model_name IntraTemporal

SelfTime:

python train_ssl.py --dataset_name CricketX --model_name SelfTime

Linear Evaluation

InterSample:

python test_linear.py --dataset_name CricketX --model_name InterSample

IntraTemporal:

python test_linear.py --dataset_name CricketX --model_name IntraTemporal

SelfTime:

python test_linear.py --dataset_name CricketX --model_name SelfTime

Supervised Training and Test

python train_test_supervised.py --dataset_name CricketX --model_name SupCE

Check Results

After runing model training and evaluation, the checkpoints of the trained model are saved in the local [ckpt] directory, the training logs are saved in the local [log] directory, and all experimental results are saved in the local [results] directory.

Cite

If you make use of this code in your own work, please cite our paper.

@inproceedings{
anonymous2021selfsupervised,
title={Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning},
author={Haoyi Fan, Fengbin Zhang, Yue Gao},
booktitle={Submitted to International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=qFQTP00Q0kp},
note={under review}
}
Owner
Haoyi Fan
Ph.D student at HRBUST
Haoyi Fan
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion ๐ŸŒน This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ โ”œโ”€โ”€ README.md โ”œโ”€โ”€ data โ”‚ย ย  โ”œโ”€โ”€ README.md โ”‚ย ย  โ”œโ”€โ”€ data ๆ•ฐๆฎ้›† โ”‚ย ย  โ”‚ย ย  โ”œโ”€

1 Dec 17, 2021
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
๐Ÿ…๐Ÿ…๐Ÿ…YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320ร—320~

YOLOv5-Lite๏ผšlighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
Neural style in TensorFlow! ๐ŸŽจ

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
Transformers are Graph Neural Networks!

๐Ÿš€ Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article

Chaitanya Joshi 46 Jun 30, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022