ICLR2021 (Under Review)

Related tags

Deep LearningSelfTime
Overview

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning

This repository contains the official PyTorch implementation of:

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning.

motivation

Abstract: Self-supervised learning achieves superior performance in many domains by extracting useful representations from the unlabeled data. However, most of traditional self-supervised methods mainly focus on exploring the inter-sample structure while less efforts have been concentrated on the underlying intra-temporal structure, which is important for time series data. In this paper, we present SelfTime: a general Self-supervised Time series representation learning framework, by exploring the inter-sample relation and intra-temporal relation of time series to learn the underlying structure feature on the unlabeled time series. Specifically, we first generate the inter-sample relation by sampling positive and negative samples of a given anchor sample, and intra-temporal relation by sampling time pieces from this anchor. Then, based on the sampled relation, a shared feature extraction backbone combined with two separate relation reasoning heads are employed to quantify the relationships of the sample pairs for inter-sample relation reasoning, and the relationships of the time piece pairs for intra-temporal relation reasoning, respectively. Finally, the useful representations of time series are extracted from the backbone under the supervision of relation reasoning heads. Experimental results on multiple real-world time series datasets for time series classification task demonstrate the effectiveness of the proposed method.

SelfTime

Requirements

  • Python 3.6 or 3.7
  • PyTorch version 1.4

Run Model Training and Evaluation

Self-supervised Pretraining

InterSample:

python train_ssl.py --dataset_name CricketX --model_name InterSample

IntraTemporal:

python train_ssl.py --dataset_name CricketX --model_name IntraTemporal

SelfTime:

python train_ssl.py --dataset_name CricketX --model_name SelfTime

Linear Evaluation

InterSample:

python test_linear.py --dataset_name CricketX --model_name InterSample

IntraTemporal:

python test_linear.py --dataset_name CricketX --model_name IntraTemporal

SelfTime:

python test_linear.py --dataset_name CricketX --model_name SelfTime

Supervised Training and Test

python train_test_supervised.py --dataset_name CricketX --model_name SupCE

Check Results

After runing model training and evaluation, the checkpoints of the trained model are saved in the local [ckpt] directory, the training logs are saved in the local [log] directory, and all experimental results are saved in the local [results] directory.

Cite

If you make use of this code in your own work, please cite our paper.

@inproceedings{
anonymous2021selfsupervised,
title={Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning},
author={Haoyi Fan, Fengbin Zhang, Yue Gao},
booktitle={Submitted to International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=qFQTP00Q0kp},
note={under review}
}
Owner
Haoyi Fan
Ph.D student at HRBUST
Haoyi Fan
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Openspoor The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch

7 Aug 22, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022