Deep Learning pipeline for motor-imagery classification.

Overview

BCI-ToolBox

1. Introduction

BCI-ToolBox is deep learning pipeline for motor-imagery classification.
This repo contains five models: ShallowConvNet, DeepConvNet, EEGNet, FBCNet, BCI2021.
(BCI2021 is not an official name.)

2. Installation

Environment

  • Python == 3.7.10
  • PyTorch == 1.9.0
  • mne == 0.23.0
  • braindecode == 0.5.1
  • CUDA == 11.0

Create conda environment

conda install pytorch=1.9.0 cudatoolkit=11.1 -c pytorch -c nvidia
conda install numpy pandas matplotlib pyyaml ipywidgets
pip install torchinfo braindecode moabb mne

3. Directory structure

.
├── README.md
├── base
│   ├── constructor.py
│   └── layers.py
├── configs
│   ├── BCI2021
│   │   └── default.yaml
│   ├── DeepConvNet
│   │   └── default.yaml
│   ├── EEGNet
│   │   └── default.yaml
│   ├── FBCNet
│   │   └── default.yaml
│   ├── ShallowConvNet
│   │   └── default.yaml
│   └── demo
│       ├── arch.yaml
│       ├── bci2021.yaml
│       ├── test.yaml
│       ├── train.yaml
│       └── training_params.yaml
├── data_loader
│   ├── data_generator.py
│   ├── datasets
│   │   ├── __init__.py
│   │   ├── bnci2014.py
│   │   ├── cho2017.py
│   │   ├── folder_dataset.py
│   │   ├── openbmi.py
│   │   └── tmp_dataset.py
│   └── transforms.py
├── main.py
├── models
│   ├── BCI2021
│   │   ├── BCI2021.py
│   │   └── __init__.py
│   ├── DeepConvNet
│   │   ├── DeepConvNet.py
│   │   └── __init__.py
│   ├── EEGNet
│   │   ├── EEGNet.py
│   │   └── __init__.py
│   ├── FBCNet
│   │   ├── FBCNet.py
│   │   └── __init__.py
│   ├── ShallowConvNet
│   │   ├── ShallowConvNet.py
│   │   └── __init__.py
│   ├── __init__.py
│   └── model_builder.py
├── trainers
│   ├── __init__.py
│   ├── cls_trainer.py
│   └── trainer_maker.py
└── utils
    ├── calculator.py
    ├── painter.py
    └── utils.py

4. Dataset

5. Get Started

Create wandb_key.yaml file

  • Create wandb_key.yaml file in configs directory.
    # wandb_key.yaml
    key: WANDB API keys
  • WANDB API keys can be obtained from your W&B account settings.

train

Use W&B

python main.py --config_file=configs/demo/train.yaml

Not use W&B

python main.py --config_file=configs/demo/train.yaml --no_wandb

USE GPU

python main.py --config_file=configs/demo/train.yaml --device=0  # Use GPU 0
python main.py --config_file=configs/demo/train.yaml --device=1  # Use GPU 1
python main.py --config_file=configs/demo/train.yaml --device=2  # Use GPU 2
  • GPU numbers depend on your server.

USE Sweep

# W&B
sweep_file: configs/demo/training_params.yaml
project: Demo
tags: [train]
  • Add this block to config file for finding training parameters.
# W&B
sweep_file: configs/demo/arch.yaml
sweep_type: arch
project: Demo
tags: [train]
  • Add this block to config file for finding model architecture.

test

python main.py --config_file=configs/demo/test.yaml

5. References

Owner
DongHee
Data Engineering / MLOps / AutoML
DongHee
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Steven Lang 58 Dec 19, 2022
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
Boundary-preserving Mask R-CNN (ECCV 2020)

BMaskR-CNN This code is developed on Detectron2 Boundary-preserving Mask R-CNN ECCV 2020 Tianheng Cheng, Xinggang Wang, Lichao Huang, Wenyu Liu Video

Hust Visual Learning Team 178 Nov 28, 2022
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022