[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

Related tags

Deep LearningHRegNet
Overview

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

Introduction

The repository contains the source code and pre-trained models of our paper (published on ICCV 2021): HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration.

The overall network architecture is shown below:

Environments

The code mainly requires the following libraries and you can check requirements.txt for more environment requirements.

Please run the following commands to install point_utils

cd models/PointUtils
python setup.py install

Training device: NVIDIA RTX 3090

Datasets

The point cloud pairs list and the ground truth relative transformation are stored in data/kitti_list and data/nuscenes_list. The data of the two datasets should be organized as follows:

KITTI odometry dataset

DATA_ROOT
├── 00
│   ├── velodyne
│   ├── calib.txt
├── 01
├── ...

NuScenes dataset

DATA_ROOT
├── v1.0-trainval
│   ├── maps
│   ├── samples
│   │   ├──LIDAR_TOP
│   ├── sweeps
│   ├── v1.0-trainval
├── v1.0-test
│   ├── maps
│   ├── samples
│   │   ├──LIDAR_TOP
│   ├── sweeps
│   ├── v1.0-test

Train

The training of the whole network is divided into two steps: we firstly train the feature extraction module and then train the network based on the pretrain features.

Train feature extraction

  • Train keypoints detector by running sh scripts/train_kitti_det.sh or sh scripts/train_nusc_det.sh, please reminder to specify the GPU,DATA_ROOT,CKPT_DIR,RUNNAME,WANDB_DIR in the scripts.
  • Train descriptor by running sh scripts/train_kitti_desc.sh or sh scripts/train_nusc_desc.sh, please reminder to specify the GPU,DATA_ROOT,CKPT_DIR,RUNNAME,WANDB_DIR and PRETRAIN_DETECTOR in the scripts.

Train the whole network

Train the network by running sh scripts/train_kitti_reg.sh or sh scripts/train_nusc_reg.sh, please reminder to specify the GPU,DATA_ROOT,CKPT_DIR,RUNNAME,WANDB_DIR and PRETRAIN_FEATS in the scripts.

Update: Pretrained weights for detector and descriptor are provided in ckpt/pretrained. If you want to train descriptor, you can set PRETRAIN_DETECTOR to DATASET_keypoints.pth. If you want to train the whole network, you can set PRETRAIN_FEATS to DATASET_feats.pth.

Test

We provide pretrain models in ckpt/pretrained, please run sh scripts/test_kitti.sh or sh scripts/test_nusc.sh, please reminder to specify GPU,DATA_ROOT,SAVE_DIR in the scripts. The test results will be saved in SAVE_DIR.

Citation

If you find this project useful for your work, please consider citing:

@InProceedings{Lu_2021_HRegNet,
        author = {Lu, Fan and Chen, Guang and Liu, Yinlong and Zhang Lijun, Qu Sanqing, Liu Shu, Gu Rongqi},
        title = {HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration},
        booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
        year = {2021}
}

Acknowledgments

We want to thank all the ICCV reviewers and the following open-source projects for the help of the implementation:

  • DGR(Point clouds preprocessing and evaluation)
  • PointNet++(unofficial implementation, for Furthest Points Sampling)
Owner
Intelligent Sensing, Perception and Computing Group
Intelligent Sensing, Perception and Computing Group
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
GoodNews Everyone! Context driven entity aware captioning for news images

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy! Model preview: Huge T

117 Dec 19, 2022
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
Roger Labbe 13k Dec 29, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022