Fine-tune pretrained Convolutional Neural Networks with PyTorch

Overview

Fine-tune pretrained Convolutional Neural Networks with PyTorch.

PyPI CircleCI codecov.io

Features

  • Gives access to the most popular CNN architectures pretrained on ImageNet.
  • Automatically replaces classifier on top of the network, which allows you to train a network with a dataset that has a different number of classes.
  • Allows you to use images with any resolution (and not only the resolution that was used for training the original model on ImageNet).
  • Allows adding a Dropout layer or a custom pooling layer.

Supported architectures and models

From the torchvision package:

  • ResNet (resnet18, resnet34, resnet50, resnet101, resnet152)
  • ResNeXt (resnext50_32x4d, resnext101_32x8d)
  • DenseNet (densenet121, densenet169, densenet201, densenet161)
  • Inception v3 (inception_v3)
  • VGG (vgg11, vgg11_bn, vgg13, vgg13_bn, vgg16, vgg16_bn, vgg19, vgg19_bn)
  • SqueezeNet (squeezenet1_0, squeezenet1_1)
  • MobileNet V2 (mobilenet_v2)
  • ShuffleNet v2 (shufflenet_v2_x0_5, shufflenet_v2_x1_0)
  • AlexNet (alexnet)
  • GoogLeNet (googlenet)

From the Pretrained models for PyTorch package:

  • ResNeXt (resnext101_32x4d, resnext101_64x4d)
  • NASNet-A Large (nasnetalarge)
  • NASNet-A Mobile (nasnetamobile)
  • Inception-ResNet v2 (inceptionresnetv2)
  • Dual Path Networks (dpn68, dpn68b, dpn92, dpn98, dpn131, dpn107)
  • Inception v4 (inception_v4)
  • Xception (xception)
  • Squeeze-and-Excitation Networks (senet154, se_resnet50, se_resnet101, se_resnet152, se_resnext50_32x4d, se_resnext101_32x4d)
  • PNASNet-5-Large (pnasnet5large)
  • PolyNet (polynet)

Requirements

  • Python 3.5+
  • PyTorch 1.1+

Installation

pip install cnn_finetune

Major changes:

Version 0.4

  • Default value for pretrained argument in make_model is changed from False to True. Now call make_model('resnet18', num_classes=10) is equal to make_model('resnet18', num_classes=10, pretrained=True)

Example usage:

Make a model with ImageNet weights for 10 classes

from cnn_finetune import make_model

model = make_model('resnet18', num_classes=10, pretrained=True)

Make a model with Dropout

model = make_model('nasnetalarge', num_classes=10, pretrained=True, dropout_p=0.5)

Make a model with Global Max Pooling instead of Global Average Pooling

import torch.nn as nn

model = make_model('inceptionresnetv2', num_classes=10, pretrained=True, pool=nn.AdaptiveMaxPool2d(1))

Make a VGG16 model that takes images of size 256x256 pixels

VGG and AlexNet models use fully-connected layers, so you have to additionally pass the input size of images when constructing a new model. This information is needed to determine the input size of fully-connected layers.

model = make_model('vgg16', num_classes=10, pretrained=True, input_size=(256, 256))

Make a VGG16 model that takes images of size 256x256 pixels and uses a custom classifier

import torch.nn as nn

def make_classifier(in_features, num_classes):
    return nn.Sequential(
        nn.Linear(in_features, 4096),
        nn.ReLU(inplace=True),
        nn.Linear(4096, num_classes),
    )

model = make_model('vgg16', num_classes=10, pretrained=True, input_size=(256, 256), classifier_factory=make_classifier)

Show preprocessing that was used to train the original model on ImageNet

>> model = make_model('resnext101_64x4d', num_classes=10, pretrained=True)
>> print(model.original_model_info)
ModelInfo(input_space='RGB', input_size=[3, 224, 224], input_range=[0, 1], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
>> print(model.original_model_info.mean)
[0.485, 0.456, 0.406]

CIFAR10 Example

See examples/cifar10.py file (requires PyTorch 1.1+).

Owner
Alex Parinov
Computer Vision Architect
Alex Parinov
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022