Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

Related tags

Deep Learningtf-fsvd
Overview

tf-fsvd

TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions

Cite

If you find our code useful, you may cite us as:

@inproceedings{haija2021fsvd,
  title={Fast Graph Learning with Unique Optimal Solutions},
  author={Sami Abu-El-Haija AND Valentino Crespi AND Greg Ver Steeg AND Aram Galstyan},
  year={2021},
  booktitle={arxiv:2102.08530},
}

Introduction

This codebase contains TensorFlow implementation of Functional SVD, an SVD routine that accepts objects with 3 attributes: dot, T, and shape. The object must be able to exactly multiply an (implicit) matrix M by any other matrix. Specifically, it should implement:

  1. dot(M1): should return M @ M1
  2. T: property should return another object that (implicitly) contains transpose of M.
  3. shape: property should return the shape of the (implicit) matrix M.

In most practical cases, M is implicit i.e. need not to be exactly computed. For consistency, such objects could inherit the abstract class ProductFn.

Simple Usage Example

Suppose you have an explicit sparse matrix mat

import scipy.sparse
import tf_fsvd

m = scipy.sparse.csr_mat( ... )
fn = tf_fsvd.SparseMatrixPF(m)

u, s, v = tf_fsvd.fsvd(fn, k=20)  # Rank 20 decomposition

The intent of this utility is for implicit matrices. For which, you may implement your own ProductFn class. You can take a look at BlockWisePF or WYSDeepWalkPF.

File Structure / Documentation

  • File tf_fsvd.py contains the main logic for TensorFlow implementation of Functional SVD (function fsvd), as well as a few classes for constructing implicit matrices.
    • SparseMatrixPF: when implicit matrix is a pre-computed sparse matrix. Using this class, you can now enjoy the equivalent of tf.linalg.svd on sparse tensors :-).
    • BlockWisePF: when implicit matrix is is column-wise concatenation of other implicit matrices. The concatenation is computed by suppling a list of ProductFn's
  • Directory implementations: contains implementations of simple methods employing fsvd.
  • Directory baselines: source code adapting competitive methods to produce metrics we report in our paper (time and accuracy).
  • Directory experiments: Shell scripts for running baselines and our implementations.
  • Directory results: Output directory containing results.

Running Experiments

ROC-AUC Link Prediction over AsymProj/WYS datasets

The AsymProj datasets are located in directory datasets/asymproj.

You can run the script for training on AsympProj datasets and measuring test ROC-AUC as:

python3 implementations/linkpred_asymproj.py

You can append flag --help to above to see which flags you can set for changing the dataset or the SVD rank.

You can run sweep on svd rank, for each of those datasets, by invoking:

# Sweep fSVD rank (k) on 4 link pred datasets. Make 3 runs per (dataset, k)
# Time is dominated by statement `import tensorflow as tf`
python3 experiments/fsvd_linkpred_k_sweep.py | bash  # You may remove "| bash" if you want to hand-pick commands.

# Summarize results onto CSV
python3 experiments/summarize_svdf_linkpred_sweep.py > results/linkpred_d_sweep/fsvd.csv

# Plot the sweep curve
python3 experiments/plot_sweep_k_linkpred.py

and running all printed commands. Alternatively, you can pipe the output of above to bash. This should populate directory results/linkpred_d_sweep/fsvd/.

Baselines

  • You can run the Watch Your Step baseline as:

     bash experiments/baselines/run_wys.sh
    

    which runs only once for every link prediction dataset. Watch Your Step spends some time computing the transition matrix powers (T^2, .., T^5).

  • You can run NetMF baselines (both approximate and exact) as:

    bash experiments/baselines/run_netmf.sh
    
  • You can run node2vec baseline as:

    experiments/baselines/run_n2v.sh
    

Classification Experiments over Planetoid Citation datasets

These datasets are from the planetoid paper. To obtain them, you should clone their repo:

mkdir -p ~/data
cd ~/data
git clone [email protected]:kimiyoung/planetoid.git

You can run the script for training and testing on planetoid datasets as:

python3 implementations/node_ssc_planetoid.py

You can append flag --help to above to see which flags you can set for changing the dataset or the number of layers.

You can sweep the number of layers running:

# Directly invokes python many times
LAYERS=`python3 -c "print(','.join(map(str, range(17))))"`
python3 experiments/planetoid_hp_search.py --wys_windows=1 --wys_neg_coefs=1 --layers=${LAYERS}

The script experiments/planetoid_hp_search.py directly invokes implementations/node_ssc_planetoid.py. You can visualize the accuracy VS depth curve by running:

python3 experiments/plot_sweep_depth_planetoid.py

Link Prediction for measuring [email protected] for Drug-Drug Interactions Network

You can run our method like:

python3 implementations/linkpred_ddi.py

This averages 10 runs (by default) and prints mean and standard deviation of validation and test metric ([email protected])

Owner
Sami Abu-El-Haija
Sami Abu-El-Haija
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Young-Seok Choi 23 Jan 25, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022