TResNet: High Performance GPU-Dedicated Architecture

Overview

TResNet: High Performance GPU-Dedicated Architecture

PWC
PWC
PWC
PWC
PWC
PWC
PWC

paperV2 | pretrained models

Official PyTorch Implementation

Tal Ridnik, Hussam Lawen, Asaf Noy, Itamar Friedman, Emanuel Ben Baruch, Gilad Sharir
DAMO Academy, Alibaba Group

Abstract

Many deep learning models, developed in recent years, reach higher ImageNet accuracy than ResNet50, with fewer or comparable FLOPS count. While FLOPs are often seen as a proxy for network efficiency, when measuring actual GPU training and inference throughput, vanilla ResNet50 is usually significantly faster than its recent competitors, offering better throughput-accuracy trade-off. In this work, we introduce a series of architecture modifications that aim to boost neural networks' accuracy, while retaining their GPU training and inference efficiency. We first demonstrate and discuss the bottlenecks induced by FLOPs-optimizations. We then suggest alternative designs that better utilize GPU structure and assets. Finally, we introduce a new family of GPU-dedicated models, called TResNet, which achieve better accuracy and efficiency than previous ConvNets. Using a TResNet model, with similar GPU throughput to ResNet50, we reach 80.7% top-1 accuracy on ImageNet. Our TResNet models also transfer well and achieve state-of-the-art accuracy on competitive datasets such as Stanford cars (96.0%), CIFAR-10 (99.0%), CIFAR-100 (91.5%) and Oxford-Flowers (99.1%). They also perform well on multi-label classification and object detection tasks.

29/11/2021 Update - New article released, offering new classification head with state-of-the-art results

Checkout our new project, Ml-Decoder, which presents a unified classification head for multi-label, single-label and zero-shot tasks. Backbones with ML-Decoder reach SOTA results, while also improving speed-accuracy tradeoff.

23/4/2021 Update - ImageNet21K Pretraining

In a new article we released, we share pretrain weights for TResNet models from ImageNet21K training, that dramatically outperfrom standard pretraining. TResNet-M model, for example, improves its ImageNet-1K score, from 80.7% to 83.1% ! This kind of improvement is consistently achieved on all downstream tasks.

28/8/2020: V2 of TResNet Article Released

Sotabench Comparisons

Comparative results from sotabench benchamrk, demonstartaing that TReNset models give excellent speed-accuracy tradoff:

11/6/2020: V1 of TResNet Article Released

The main change - In addition to single label SOTA results, we also added top results for multi-label classification and object detection tasks, using TResNet. For example, we set a new SOTA record for MS-COCO multi-label dataset, surpassing the previous top results by more than 2.5% mAP !

Bacbkone mAP
KSSNet (previous SOTA) 83.7
TResNet-L 86.4

2/6/2020: CVPR-Kaggle competitions

We participated and won top places in two major CVPR-Kaggle competitions:

  • 2nd place in Herbarium 2020 competition, out of 153 teams.
  • 7th place in Plant-Pathology 2020 competition, out of 1317 teams.

    TResNet was a vital part of our solution for both competitions, allowing us to work on high resolutions and reach top scores while doing fast and efficient experiments.

Main Article Results

TResNet Models

TResNet models accuracy and GPU throughput on ImageNet, compared to ResNet50. All measurements were done on Nvidia V100 GPU, with mixed precision. All models are trained on input resolution of 224.

Models Top Training Speed
(img/sec)
Top Inference Speed
(img/sec)
Max Train Batch Size Top-1 Acc.
ResNet50 805 2830 288 79.0
EfficientNetB1 440 2740 196 79.2
TResNet-M 730 2930 512 80.8
TResNet-L 345 1390 316 81.5
TResNet-XL 250 1060 240 82.0

Comparison To Other Networks

Comparison of ResNet50 to top modern networks, with similar top-1 ImageNet accuracy. All measurements were done on Nvidia V100 GPU with mixed precision. For gaining optimal speeds, training and inference were measured on 90% of maximal possible batch size. Except TResNet-M, all the models' ImageNet scores were taken from the public repository, which specialized in providing top implementations for modern networks. Except EfficientNet-B1, which has input resolution of 240, all other models have input resolution of 224.

Model Top Training Speed
(img/sec)
Top Inference Speed
(img/sec)
Top-1 Acc. Flops[G]
ResNet50 805 2830 79.0 4.1
ResNet50-D 600 2670 79.3 4.4
ResNeXt50 490 1940 79.4 4.3
EfficientNetB1 440 2740 79.2 0.6
SEResNeXt50 400 1770 79.9 4.3
MixNet-L 400 1400 79.0 0.5
TResNet-M 730 2930 80.8 5.5


Transfer Learning SotA Results

Comparison of TResNet to state-of-the-art models on transfer learning datasets (only ImageNet-based transfer learning results). Models inference speed is measured on a mixed precision V100 GPU. Since no official implementation of Gpipe was provided, its inference speed is unknown

Dataset Model Top-1
Acc.
Speed
img/sec
Input
CIFAR-10 Gpipe 99.0 - 480
TResNet-XL 99.0 1060 224
CIFAR-100 EfficientNet-B7 91.7 70 600
TResNet-XL 91.5 1060 224
Stanford Cars EfficientNet-B7 94.7 70 600
TResNet-L 96.0 500 368
Oxford-Flowers EfficientNet-B7 98.8 70 600
TResNet-L 99.1 500 368

Reproduce Article Scores

We provide code for reproducing the validation top-1 score of TResNet models on ImageNet. First, download pretrained models from here.

Then, run the infer.py script. For example, for tresnet_m (input size 224) run:

python -m infer.py \
--val_dir=/path/to/imagenet_val_folder \
--model_path=/model/path/to/tresnet_m.pth \
--model_name=tresnet_m
--input_size=224

TResNet Training

Due to IP limitations, we do not provide the exact training code that was used to obtain the article results.

However, TResNet is now an integral part of the popular rwightman / pytorch-image-models repo. Using that repo, you can reach very similar results to the one stated in the article.

For example, training tresnet_m on rwightman / pytorch-image-models with the command line:

python -u -m torch.distributed.launch --nproc_per_node=8 \
--nnodes=1 --node_rank=0 ./train.py /data/imagenet/ \
-b=190 --lr=0.6 --model-ema --aa=rand-m9-mstd0.5-inc1 \
--num-gpu=8 -j=16 --amp \
--model=tresnet_m --epochs=300 --mixup=0.2 \
--sched='cosine' --reprob=0.4 --remode=pixel

gave accuracy of 80.5%.

Also, during the merge request, we had interesting discussions and insights regarding TResNet design. I am attaching a pdf version the mentioned discussions. They can shed more light on TResNet design considerations and directions for the future.

TResNet discussion and insights

(taken with permission from here)

Tips For Working With Inplace-ABN

See INPLACE_ABN_TIPS.

Citation

@misc{ridnik2020tresnet,
    title={TResNet: High Performance GPU-Dedicated Architecture},
    author={Tal Ridnik and Hussam Lawen and Asaf Noy and Itamar Friedman},
    year={2020},
    eprint={2003.13630},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Contact

Feel free to contact me if there are any questions or issues (Tal Ridnik, [email protected]).

HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
Pytorch implementation of set transformer

set_transformer Official PyTorch implementation of the paper Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks .

Juho Lee 410 Jan 06, 2023
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022