Image-to-image translation with conditional adversarial nets

Overview

pix2pix

Project | Arxiv | PyTorch

Torch implementation for learning a mapping from input images to output images, for example:

Image-to-Image Translation with Conditional Adversarial Networks
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros
CVPR, 2017.

On some tasks, decent results can be obtained fairly quickly and on small datasets. For example, to learn to generate facades (example shown above), we trained on just 400 images for about 2 hours (on a single Pascal Titan X GPU). However, for harder problems it may be important to train on far larger datasets, and for many hours or even days.

Note: Please check out our PyTorch implementation for pix2pix and CycleGAN. The PyTorch version is under active development and can produce results comparable to or better than this Torch version.

Setup

Prerequisites

  • Linux or OSX
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN may work with minimal modification, but untested)

Getting Started

luarocks install nngraph
luarocks install https://raw.githubusercontent.com/szym/display/master/display-scm-0.rockspec
  • Clone this repo:
git clone [email protected]:phillipi/pix2pix.git
cd pix2pix
bash ./datasets/download_dataset.sh facades
  • Train the model
DATA_ROOT=./datasets/facades name=facades_generation which_direction=BtoA th train.lua
  • (CPU only) The same training command without using a GPU or CUDNN. Setting the environment variables gpu=0 cudnn=0 forces CPU only
DATA_ROOT=./datasets/facades name=facades_generation which_direction=BtoA gpu=0 cudnn=0 batchSize=10 save_epoch_freq=5 th train.lua
  • (Optionally) start the display server to view results as the model trains. ( See Display UI for more details):
th -ldisplay.start 8000 0.0.0.0
  • Finally, test the model:
DATA_ROOT=./datasets/facades name=facades_generation which_direction=BtoA phase=val th test.lua

The test results will be saved to an html file here: ./results/facades_generation/latest_net_G_val/index.html.

Train

DATA_ROOT=/path/to/data/ name=expt_name which_direction=AtoB th train.lua

Switch AtoB to BtoA to train translation in opposite direction.

Models are saved to ./checkpoints/expt_name (can be changed by passing checkpoint_dir=your_dir in train.lua).

See opt in train.lua for additional training options.

Test

DATA_ROOT=/path/to/data/ name=expt_name which_direction=AtoB phase=val th test.lua

This will run the model named expt_name in direction AtoB on all images in /path/to/data/val.

Result images, and a webpage to view them, are saved to ./results/expt_name (can be changed by passing results_dir=your_dir in test.lua).

See opt in test.lua for additional testing options.

Datasets

Download the datasets using the following script. Some of the datasets are collected by other researchers. Please cite their papers if you use the data.

bash ./datasets/download_dataset.sh dataset_name

Models

Download the pre-trained models with the following script. You need to rename the model (e.g., facades_label2image to /checkpoints/facades/latest_net_G.t7) after the download has finished.

bash ./models/download_model.sh model_name
  • facades_label2image (label -> facade): trained on the CMP Facades dataset.
  • cityscapes_label2image (label -> street scene): trained on the Cityscapes dataset.
  • cityscapes_image2label (street scene -> label): trained on the Cityscapes dataset.
  • edges2shoes (edge -> photo): trained on UT Zappos50K dataset.
  • edges2handbags (edge -> photo): trained on Amazon handbags images.
  • day2night (daytime scene -> nighttime scene): trained on around 100 webcams.

Setup Training and Test data

Generating Pairs

We provide a python script to generate training data in the form of pairs of images {A,B}, where A and B are two different depictions of the same underlying scene. For example, these might be pairs {label map, photo} or {bw image, color image}. Then we can learn to translate A to B or B to A:

Create folder /path/to/data with subfolders A and B. A and B should each have their own subfolders train, val, test, etc. In /path/to/data/A/train, put training images in style A. In /path/to/data/B/train, put the corresponding images in style B. Repeat same for other data splits (val, test, etc).

Corresponding images in a pair {A,B} must be the same size and have the same filename, e.g., /path/to/data/A/train/1.jpg is considered to correspond to /path/to/data/B/train/1.jpg.

Once the data is formatted this way, call:

python scripts/combine_A_and_B.py --fold_A /path/to/data/A --fold_B /path/to/data/B --fold_AB /path/to/data

This will combine each pair of images (A,B) into a single image file, ready for training.

Notes on Colorization

No need to run combine_A_and_B.py for colorization. Instead, you need to prepare some natural images and set preprocess=colorization in the script. The program will automatically convert each RGB image into Lab color space, and create L -> ab image pair during the training. Also set input_nc=1 and output_nc=2.

Extracting Edges

We provide python and Matlab scripts to extract coarse edges from photos. Run scripts/edges/batch_hed.py to compute HED edges. Run scripts/edges/PostprocessHED.m to simplify edges with additional post-processing steps. Check the code documentation for more details.

Evaluating Labels2Photos on Cityscapes

We provide scripts for running the evaluation of the Labels2Photos task on the Cityscapes validation set. We assume that you have installed caffe (and pycaffe) in your system. If not, see the official website for installation instructions. Once caffe is successfully installed, download the pre-trained FCN-8s semantic segmentation model (512MB) by running

bash ./scripts/eval_cityscapes/download_fcn8s.sh

Then make sure ./scripts/eval_cityscapes/ is in your system's python path. If not, run the following command to add it

export PYTHONPATH=${PYTHONPATH}:./scripts/eval_cityscapes/

Now you can run the following command to evaluate your predictions:

python ./scripts/eval_cityscapes/evaluate.py --cityscapes_dir /path/to/original/cityscapes/dataset/ --result_dir /path/to/your/predictions/ --output_dir /path/to/output/directory/

Images stored under --result_dir should contain your model predictions on the Cityscapes validation split, and have the original Cityscapes naming convention (e.g., frankfurt_000001_038418_leftImg8bit.png). The script will output a text file under --output_dir containing the metric.

Further notes: Our pre-trained FCN model is not supposed to work on Cityscapes in the original resolution (1024x2048) as it was trained on 256x256 images that are then upsampled to 1024x2048 during training. The purpose of the resizing during training was to 1) keep the label maps in the original high resolution untouched and 2) avoid the need to change the standard FCN training code and the architecture for Cityscapes. During test time, you need to synthesize 256x256 results. Our test code will automatically upsample your results to 1024x2048 before feeding them to the pre-trained FCN model. The output is at 1024x2048 resolution and will be compared to 1024x2048 ground truth labels. You do not need to resize the ground truth labels. The best way to verify whether everything is correct is to reproduce the numbers for real images in the paper first. To achieve it, you need to resize the original/real Cityscapes images (not labels) to 256x256 and feed them to the evaluation code.

Display UI

Optionally, for displaying images during training and test, use the display package.

  • Install it with: luarocks install https://raw.githubusercontent.com/szym/display/master/display-scm-0.rockspec
  • Then start the server with: th -ldisplay.start
  • Open this URL in your browser: http://localhost:8000

By default, the server listens on localhost. Pass 0.0.0.0 to allow external connections on any interface:

th -ldisplay.start 8000 0.0.0.0

Then open http://(hostname):(port)/ in your browser to load the remote desktop.

L1 error is plotted to the display by default. Set the environment variable display_plot to a comma-separated list of values errL1, errG and errD to visualize the L1, generator, and discriminator error respectively. For example, to plot only the generator and discriminator errors to the display instead of the default L1 error, set display_plot="errG,errD".

Citation

If you use this code for your research, please cite our paper Image-to-Image Translation Using Conditional Adversarial Networks:

@article{pix2pix2017,
  title={Image-to-Image Translation with Conditional Adversarial Networks},
  author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A},
  journal={CVPR},
  year={2017}
}

Cat Paper Collection

If you love cats, and love reading cool graphics, vision, and learning papers, please check out the Cat Paper Collection:
[Github] [Webpage]

Acknowledgments

Code borrows heavily from DCGAN. The data loader is modified from DCGAN and Context-Encoder.

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022