PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Overview

Long Short-Term Transformer for Online Action Detection

Introduction

This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

network

Environment

  • The code is developed with CUDA 10.2, Python >= 3.7.7, PyTorch >= 1.7.1

    1. [Optional but recommended] create a new conda environment.

      conda create -n lstr python=3.7.7
      

      And activate the environment.

      conda activate lstr
      
    2. Install the requirements

      pip install -r requirements.txt
      

Data Preparation

  1. Download the THUMOS'14 and TVSeries datasets.

  2. Extract feature representations for video frames.

    • For ActivityNet pretrained features, we use the ResNet-50 model for the RGB and optical flow inputs. We recommend to use this checkpoint in MMAction2.

    • For Kinetics pretrained features, we use the ResNet-50 model for the RGB inputs. We recommend to use this checkpoint in MMAction2. We use the BN-Inception model for the optical flow inputs. We recommend to use the model here.

    Note: We compute the optical flow using DenseFlow.

  3. If you want to use our dataloaders, please make sure to put the files as the following structure:

    • THUMOS'14 dataset:

      $YOUR_PATH_TO_THUMOS_DATASET
      ├── rgb_kinetics_resnet50/
      |   ├── video_validation_0000051.npy (of size L x 2048)
      │   ├── ...
      ├── flow_kinetics_bninception/
      |   ├── video_validation_0000051.npy (of size L x 1024)
      |   ├── ...
      ├── target_perframe/
      |   ├── video_validation_0000051.npy (of size L x 22)
      |   ├── ...
      
    • TVSeries dataset:

      $YOUR_PATH_TO_TVSERIES_DATASET
      ├── rgb_kinetics_resnet50/
      |   ├── Breaking_Bad_ep1.npy (of size L x 2048)
      │   ├── ...
      ├── flow_kinetics_bninception/
      |   ├── Breaking_Bad_ep1.npy (of size L x 1024)
      |   ├── ...
      ├── target_perframe/
      |   ├── Breaking_Bad_ep1.npy (of size L x 31)
      |   ├── ...
      
  4. Create softlinks of datasets:

    cd long-short-term-transformer
    ln -s $YOUR_PATH_TO_THUMOS_DATASET data/THUMOS
    ln -s $YOUR_PATH_TO_TVSERIES_DATASET data/TVSeries
    

Training

Training LSTR with 512 seconds long-term memory and 8 seconds short-term memory requires less 3 GB GPU memory.

The commands are as follows.

cd long-short-term-transformer
# Training from scratch
python tools/train_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES
# Finetuning from a pretrained model
python tools/train_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES \
    MODEL.CHECKPOINT $PATH_TO_CHECKPOINT

Online Inference

There are three kinds of evaluation methods in our code.

  • First, you can use the config SOLVER.PHASES "['train', 'test']" during training. This process devides each test video into non-overlapping samples, and makes prediction on the all the frames in the short-term memory as if they were the latest frame. Note that this evaluation result is not the final performance, since (1) for most of the frames, their short-term memory is not fully utlized and (2) for simplicity, samples in the boundaries are mostly ignored.

    cd long-short-term-transformer
    # Inference along with training
    python tools/train_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES \
        SOLVER.PHASES "['train', 'test']"
    
  • Second, you could run the online inference in batch mode. This process evaluates all video frames by considering each of them as the latest frame and filling the long- and short-term memories by tracing back in time. Note that this evaluation result matches the numbers reported in the paper, but batch mode cannot be further accelerated as descibed in paper's Sec 3.6. On the other hand, this mode can run faster when you use a large batch size, and we recomand to use it for performance benchmarking.

    cd long-short-term-transformer
    # Online inference in batch mode
    python tools/test_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES \
        MODEL.CHECKPOINT $PATH_TO_CHECKPOINT MODEL.LSTR.INFERENCE_MODE batch
    
  • Third, you could run the online inference in stream mode. This process tests frame by frame along the entire video, from the beginning to the end. Note that this evaluation result matches the both LSTR's performance and runtime reported in the paper. It processes the entire video as LSTR is applied to real-world scenarios. However, currently it only supports to test one video at each time.

    cd long-short-term-transformer
    # Online inference in stream mode
    python tools/test_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES \
        MODEL.CHECKPOINT $PATH_TO_CHECKPOINT MODEL.LSTR.INFERENCE_MODE stream DATA.TEST_SESSION_SET "['$VIDEO_NAME']"
    

Evaluation

Evaluate LSTR's performance for online action detection using perframe mAP or mcAP.

cd long-short-term-transformer
python tools/eval/eval_perframe --pred_scores_file $PRED_SCORES_FILE

Evaluate LSTR's performance at different action stages by evaluating each decile (ten-percent interval) of the video frames separately.

cd long-short-term-transformer
python tools/eval/eval_perstage --pred_scores_file $PRED_SCORES_FILE

Citations

If you are using the data/code/model provided here in a publication, please cite our paper:

@inproceedings{xu2021long,
	title={Long Short-Term Transformer for Online Action Detection},
	author={Xu, Mingze and Xiong, Yuanjun and Chen, Hao and Li, Xinyu and Xia, Wei and Tu, Zhuowen and Soatto, Stefano},
	booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
	year={2021}
}

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
DISTIL: Deep dIverSified inTeractIve Learning.

DISTIL: Deep dIverSified inTeractIve Learning. An active/inter-active learning library built on py-torch for reducing labeling costs.

decile-team 110 Dec 06, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022