WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

Overview

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Test-CPU

Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a replica of the stable version in NVIDIA Neural Module repository (NVIDIA NeMo).

NOTE: The code here will have experimental extensions and may be potentially unstable, use the version in NeMo for long term supported loss version of RNNT for PyTorch.

Supported Features

Currently supports :

  1. WarpRNNT loss in pytorch for CPU / CUDA (jit compiled)
  2. FastEmit
  3. Gradient Clipping (from Torch Audio)

Installation

You will need PyTorch (usually the latest version should be used), plus installation of Numba in a Conda environment (pip only environment is untested but may work).

# Follow installation instructions to install pytorch from website (with cuda if required)
conda install -c conda-force numba or conda update -c conda-forge numba (to get latest version)

# Then install this library
pip install --upgrade git+https://github.com/titu1994/warprnnt_numba.git

Usage

Import warprnnt_numba and use RNNTLossNumba. If attempting to use CUDA version of loss, it is advisable to test that your installed CUDA version is compatible with numba version using numba_utils.

There is also included a very slow numpy/pytorch explicit-loop based loss implementation for verification of exact correct results.

import torch
import numpy as np
import warprnnt_numba

# Define the loss function
fastemit_lambda = 0.001  # any float >= 0.0
loss_pt = warprnnt_numba.RNNTLossNumba(blank=4, reduction='sum', fastemit_lambda=fastemit_lambda)

# --------------
# Example usage

device = "cuda"
torch.random.manual_seed(0)

# Assume Batchsize=2, Acoustic Timesteps = 8, Label Timesteps = 5 (including BLANK=BOS token),
# and Vocabulary size of 5 tokens (including RNNT BLANK)
acts = torch.randn(2, 8, 5, 5, device=device, requires_grad=True)
sequence_length = torch.tensor([5, 8], dtype=torch.int32,
                               device=device)  # acoustic sequence length. One element must be == acts.shape[1].

# Let 0 be MASK/PAD value, 1-3 be token ids, and 4 represent RNNT BLANK token
# The BLANK token is overloaded for BOS token as well here, but can be different token.
# Let first sample be padded with 0 (actual length = 3). Loss is computed according to supplied `label_lengths`.
# and gradients for the 4th index onwards (0 based indexing).
labels = torch.tensor([[4, 1, 1, 3, 0], [4, 2, 2, 3, 1]], dtype=torch.int32, device=device)
label_lengths = torch.tensor([3, 4], dtype=torch.int32,
                             device=device)  # Lengths here must be WITHOUT the BOS token.

# If on CUDA, log_softmax is computed internally efficiently (preserving memory and speed)
# Compute it explicitly for CPU, this is done automatically for you inside forward() of the loss.
# -1-th vocab index is RNNT blank token here.
loss_func = warprnnt_numba.RNNTLossNumba(blank=4, reduction='none',
                                         fastemit_lambda=0.0, clamp=0.0)
loss = loss_func(acts, labels, sequence_length, label_lengths)
print("Loss :", loss)
loss.sum().backward()

# When parsing the gradients, look at grads[0] -
# Since it was padded in T (sequence_length=5 < T=8), there are gradients only for grads[0, :5, :, :].
# Since it was padded in U (label_lengths=3+1 < U=5), there are gradeints only for grads[0, :5, :3+1, :].
grads = acts.grad
print("Gradients of activations :")
print(grads)

Tests

Tests will perform CPU only checks if there are no GPUs. If GPUs are present, will run all tests once for cuda:0 as well.

pytest tests/

Requirements

  • pytorch >= 1.10. Older versions might work, not tested.
  • numba - Minimum required version is 0.53.0, preferred is 0.54+.
You might also like...
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Prevent `CUDA error: out of memory` in just 1 line of code.
Prevent `CUDA error: out of memory` in just 1 line of code.

🐨 Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. 🚀 Features 🙅 Prevents CUDA error

An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

Comments
  • GPU under utilization due to low occupancy.

    GPU under utilization due to low occupancy.

    Thank you for the warprnnt_numba, I got the warnning (show blow) when I use this loss in my code. 1650880807(1) Is this known issue? How can it be debugged and solved?

    Thank you!

    opened by jiay7 2
  • Fix runtime speed

    Fix runtime speed

    Improve runtime speed of numba loss

    • Fix issue with data movement of costs tensor from llForward to pytorch data view in numba
    • This alone costs a linear loop (scaling with batch size) that is roughly 10x the kernel costs themselves.
    • Fix by writing a small kernel to copy the data and update the costs.
    opened by titu1994 0
Releases(v0.4.0)
  • v0.4.0(Jan 30, 2022)

    Supports

    • Simple RNNT loss with Atomic Locks implementation

    Improvements

    • Improve runtime speed of numba loss
      • Fix issue with data movement of costs tensor from llForward to pytorch data view in numba
      • This alone costs a linear loop (scaling with batch size) that is roughly 10x the kernel costs themselves.
      • Fix by writing a small kernel to copy the data and update the costs.
    Source code(tar.gz)
    Source code(zip)
  • v0.2.2(Jan 24, 2022)

    Initial release of Warp RNNT loss with Numba JIT compile (CPU/CUDA)

    Supports:

    1. Pytorch RNNT loss (CPU and JIT compiled CUDA)
    2. FastEmit
    3. Gradient clipping
    Source code(tar.gz)
    Source code(zip)
Owner
Somshubra Majumdar
Interested in Machine Learning, Deep Learning and Data Science in general
Somshubra Majumdar
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
Code for "Neural 3D Scene Reconstruction with the Manhattan-world Assumption" CVPR 2022 Oral

News 05/10/2022 To make the comparison on ScanNet easier, we provide all quantitative and qualitative results of baselines here, including COLMAP, COL

ZJU3DV 365 Dec 30, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
Fast and Easy Infinite Neural Networks in Python

Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural

Google 1.9k Jan 09, 2023
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021