Example repository for custom C++/CUDA operators for TorchScript

Overview

Custom TorchScript Operators Example

This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the accompanying tutorial.

Contents

There a few monuments in this repository you can visit. They are described in context in the tutorial, which you are encouraged to read. These monuments are:

  • example_app/warp_perspective/op.cpp: The custom operator implementation,
  • example_app/main.cpp: An example application that loads and executes a serialized TorchScript model, which uses the custom operator, in C++,
  • script.py: Example of using the custom operator in a scripted model,
  • trace.py: Example of using the custom operator in a traced model,
  • eager.py: Example of using the custom operator in vanilla eager PyTorch,
  • load.py: Example of using torch.utils.cpp_extension.load to build the custom operator,
  • load.py: Example of using torch.utils.cpp_extension.load_inline to build the custom operator,
  • setup.py: Example of using setuptools to build the custom operator,
  • test_setup.py: Example of using the custom operator built using setup.py.

To execute the C++ application, first run script.py to serialize a TorchScript model to a file called example.pt, then pass that file to the example_app/build/example_app binary.

Setup

For the smoothest experience when trying out these examples, we recommend building a docker container from this repository's Dockerfile. This will give you a clean, isolated Ubuntu Linux environment in which we guarantee everything to work perfectly. These steps should get you started:

$ git clone https://github.com/pytorch/extension-script

$ cd extension-script

$ docker build -t extension-script .

$ docker run -v $PWD:/home -it extension-script

$ [email protected]:/home# source /activate # Activate the Conda environment

$ cd example_app && mkdir build && cd build

$ cmake -DCMAKE_PREFIX_PATH=/libtorch ..
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Looking for pthread.h
-- Looking for pthread.h - found
-- Looking for pthread_create
-- Looking for pthread_create - not found
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE
-- Found torch: /libtorch/lib/libtorch.so
-- Configuring done
-- Generating done
-- Build files have been written to: /home/example_app/build

$ make -j
Scanning dependencies of target warp_perspective
[ 25%] Building CXX object warp_perspective/CMakeFiles/warp_perspective.dir/op.cpp.o
[ 50%] Linking CXX shared library libwarp_perspective.so
[ 50%] Built target warp_perspective
Scanning dependencies of target example_app
[ 75%] Building CXX object CMakeFiles/example_app.dir/main.cpp.o
[100%] Linking CXX executable example_app
[100%] Built target example_app

This will create a shared library under /home/example_app/build/warp_perspective/libwarp_perspective.so containing the custom operator defined in example_app/warp_perspective/op.cpp. Then, you can run the examples, e.g.:

(base) [email protected]:/home# python script.py
graph(%x.1 : Dynamic
      %y : Dynamic) {
  %20 : int = prim::Constant[value=1]()
  %16 : int[] = prim::Constant[value=[0, -1]]()
  %14 : int = prim::Constant[value=6]()
  %2 : int = prim::Constant[value=0]()
  %7 : int = prim::Constant[value=42]()
  %z.1 : int = prim::Constant[value=5]()
  %z.2 : int = prim::Constant[value=10]()
  %13 : int = prim::Constant[value=3]()
  %4 : Dynamic = aten::select(%x.1, %2, %2)
  %6 : Dynamic = aten::select(%4, %2, %2)
  %8 : Dynamic = aten::eq(%6, %7)
  %9 : bool = prim::TensorToBool(%8)
  %z : int = prim::If(%9)
    block0() {
      -> (%z.1)
    }
    block1() {
      -> (%z.2)
    }
  %17 : Dynamic = aten::eye(%13, %14, %2, %16)
  %x : Dynamic = my_ops::warp_perspective(%x.1, %17)
  %19 : Dynamic = aten::matmul(%x, %y)
  %21 : Dynamic = aten::add(%19, %z, %20)
  return (%21);
}

tensor([[11.6196, 12.0056, 11.6122, 12.9298,  7.0649],
        [ 8.5063,  9.0621,  9.9925,  6.3741,  8.9668],
        [12.5898,  6.5872,  8.1511, 10.0806, 11.9829],
        [ 4.9142, 11.6614, 15.7161, 17.0538, 11.7243],
        [10.0000, 10.0000, 10.0000, 10.0000, 10.0000],
        [10.0000, 10.0000, 10.0000, 10.0000, 10.0000],
        [10.0000, 10.0000, 10.0000, 10.0000, 10.0000],
        [10.0000, 10.0000, 10.0000, 10.0000, 10.0000]])
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
DumpSMBShare - A script to dump files and folders remotely from a Windows SMB share

DumpSMBShare A script to dump files and folders remotely from a Windows SMB shar

Podalirius 178 Jan 06, 2023
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022