Example repository for custom C++/CUDA operators for TorchScript

Overview

Custom TorchScript Operators Example

This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the accompanying tutorial.

Contents

There a few monuments in this repository you can visit. They are described in context in the tutorial, which you are encouraged to read. These monuments are:

  • example_app/warp_perspective/op.cpp: The custom operator implementation,
  • example_app/main.cpp: An example application that loads and executes a serialized TorchScript model, which uses the custom operator, in C++,
  • script.py: Example of using the custom operator in a scripted model,
  • trace.py: Example of using the custom operator in a traced model,
  • eager.py: Example of using the custom operator in vanilla eager PyTorch,
  • load.py: Example of using torch.utils.cpp_extension.load to build the custom operator,
  • load.py: Example of using torch.utils.cpp_extension.load_inline to build the custom operator,
  • setup.py: Example of using setuptools to build the custom operator,
  • test_setup.py: Example of using the custom operator built using setup.py.

To execute the C++ application, first run script.py to serialize a TorchScript model to a file called example.pt, then pass that file to the example_app/build/example_app binary.

Setup

For the smoothest experience when trying out these examples, we recommend building a docker container from this repository's Dockerfile. This will give you a clean, isolated Ubuntu Linux environment in which we guarantee everything to work perfectly. These steps should get you started:

$ git clone https://github.com/pytorch/extension-script

$ cd extension-script

$ docker build -t extension-script .

$ docker run -v $PWD:/home -it extension-script

$ [email protected]:/home# source /activate # Activate the Conda environment

$ cd example_app && mkdir build && cd build

$ cmake -DCMAKE_PREFIX_PATH=/libtorch ..
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Looking for pthread.h
-- Looking for pthread.h - found
-- Looking for pthread_create
-- Looking for pthread_create - not found
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE
-- Found torch: /libtorch/lib/libtorch.so
-- Configuring done
-- Generating done
-- Build files have been written to: /home/example_app/build

$ make -j
Scanning dependencies of target warp_perspective
[ 25%] Building CXX object warp_perspective/CMakeFiles/warp_perspective.dir/op.cpp.o
[ 50%] Linking CXX shared library libwarp_perspective.so
[ 50%] Built target warp_perspective
Scanning dependencies of target example_app
[ 75%] Building CXX object CMakeFiles/example_app.dir/main.cpp.o
[100%] Linking CXX executable example_app
[100%] Built target example_app

This will create a shared library under /home/example_app/build/warp_perspective/libwarp_perspective.so containing the custom operator defined in example_app/warp_perspective/op.cpp. Then, you can run the examples, e.g.:

(base) [email protected]:/home# python script.py
graph(%x.1 : Dynamic
      %y : Dynamic) {
  %20 : int = prim::Constant[value=1]()
  %16 : int[] = prim::Constant[value=[0, -1]]()
  %14 : int = prim::Constant[value=6]()
  %2 : int = prim::Constant[value=0]()
  %7 : int = prim::Constant[value=42]()
  %z.1 : int = prim::Constant[value=5]()
  %z.2 : int = prim::Constant[value=10]()
  %13 : int = prim::Constant[value=3]()
  %4 : Dynamic = aten::select(%x.1, %2, %2)
  %6 : Dynamic = aten::select(%4, %2, %2)
  %8 : Dynamic = aten::eq(%6, %7)
  %9 : bool = prim::TensorToBool(%8)
  %z : int = prim::If(%9)
    block0() {
      -> (%z.1)
    }
    block1() {
      -> (%z.2)
    }
  %17 : Dynamic = aten::eye(%13, %14, %2, %16)
  %x : Dynamic = my_ops::warp_perspective(%x.1, %17)
  %19 : Dynamic = aten::matmul(%x, %y)
  %21 : Dynamic = aten::add(%19, %z, %20)
  return (%21);
}

tensor([[11.6196, 12.0056, 11.6122, 12.9298,  7.0649],
        [ 8.5063,  9.0621,  9.9925,  6.3741,  8.9668],
        [12.5898,  6.5872,  8.1511, 10.0806, 11.9829],
        [ 4.9142, 11.6614, 15.7161, 17.0538, 11.7243],
        [10.0000, 10.0000, 10.0000, 10.0000, 10.0000],
        [10.0000, 10.0000, 10.0000, 10.0000, 10.0000],
        [10.0000, 10.0000, 10.0000, 10.0000, 10.0000],
        [10.0000, 10.0000, 10.0000, 10.0000, 10.0000]])
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Py4fi2nd - Jupyter Notebooks and code for Python for Finance (2nd ed., O'Reilly) by Yves Hilpisch.

Python for Finance (2nd ed., O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Mastering Dat

Yves Hilpisch 1k Jan 05, 2023
一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目

定时面板上的签到盒 一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 特别声明 本仓库发布的脚本及其中涉及的任何解锁和解密分析脚本,仅用于测试和学习研究,禁止用于商业用途,不能保证其合

Leon 1.1k Dec 30, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
Ascend your Jupyter Notebook usage

Jupyter Ascending Sync Jupyter Notebooks from any editor About Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then insta

Untitled AI 254 Jan 08, 2023
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022