PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

Overview

Ultra-Fast-Lane-Detection

PyTorch implementation of the paper "Ultra Fast Structure-aware Deep Lane Detection".

[June 28, 2021] Updates: we will release an extended version, which improves 6.3 points of F1 on CULane with the ResNet-18 backbone compared with the ECCV version.

Updates: Our paper has been accepted by ECCV2020.

alt text

The evaluation code is modified from SCNN and Tusimple Benchmark.

Caffe model and prototxt can be found here.

Demo

Demo

Install

Please see INSTALL.md

Get started

First of all, please modify data_root and log_path in your configs/culane.py or configs/tusimple.py config according to your environment.

  • data_root is the path of your CULane dataset or Tusimple dataset.
  • log_path is where tensorboard logs, trained models and code backup are stored. It should be placed outside of this project.

For single gpu training, run

python train.py configs/path_to_your_config

For multi-gpu training, run

sh launch_training.sh

or

python -m torch.distributed.launch --nproc_per_node=$NGPUS train.py configs/path_to_your_config

If there is no pretrained torchvision model, multi-gpu training may result in multiple downloading. You can first download the corresponding models manually, and then restart the multi-gpu training.

Since our code has auto backup function which will copy all codes to the log_path according to the gitignore, additional temp file might also be copied if it is not filtered by gitignore, which may block the execution if the temp files are large. So you should keep the working directory clean.


Besides config style settings, we also support command line style one. You can override a setting like

python train.py configs/path_to_your_config --batch_size 8

The batch_size will be set to 8 during training.


To visualize the log with tensorboard, run

tensorboard --logdir log_path --bind_all

Trained models

We provide two trained Res-18 models on CULane and Tusimple.

Dataset Metric paper Metric This repo Avg FPS on GTX 1080Ti Model
Tusimple 95.87 95.82 306 GoogleDrive/BaiduDrive(code:bghd)
CULane 68.4 69.7 324 GoogleDrive/BaiduDrive(code:w9tw)

For evaluation, run

mkdir tmp
# This a bad example, you should put the temp files outside the project.

python test.py configs/culane.py --test_model path_to_culane_18.pth --test_work_dir ./tmp

python test.py configs/tusimple.py --test_model path_to_tusimple_18.pth --test_work_dir ./tmp

Same as training, multi-gpu evaluation is also supported.

Visualization

We provide a script to visualize the detection results. Run the following commands to visualize on the testing set of CULane and Tusimple.

python demo.py configs/culane.py --test_model path_to_culane_18.pth
# or
python demo.py configs/tusimple.py --test_model path_to_tusimple_18.pth

Since the testing set of Tusimple is not ordered, the visualized video might look bad and we do not recommend doing this.

Speed

To test the runtime, please run

python speed_simple.py  
# this will test the speed with a simple protocol and requires no additional dependencies

python speed_real.py
# this will test the speed with real video or camera input

It will loop 100 times and calculate the average runtime and fps in your environment.

Citation

@InProceedings{qin2020ultra,
author = {Qin, Zequn and Wang, Huanyu and Li, Xi},
title = {Ultra Fast Structure-aware Deep Lane Detection},
booktitle = {The European Conference on Computer Vision (ECCV)},
year = {2020}
}

Thanks

Thanks zchrissirhcz for the contribution to the compile tool of CULane, KopiSoftware for contributing to the speed test, and ustclbh for testing on the Windows platform.

A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
Artstation-Artistic-face-HQ Dataset (AAHQ)

Artstation-Artistic-face-HQ Dataset (AAHQ) Artstation-Artistic-face-HQ (AAHQ) is a high-quality image dataset of artistic-face images. It is proposed

onion 105 Dec 16, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Xi Dongbo 78 Nov 29, 2022
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021