A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Overview

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition

The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition.
[paper] [supplemental material] [arXiv]

If you find our work or the codebase inspiring and useful to your research, please cite

@inproceedings{yuan2021DIN,
  title={Spatio-Temporal Dynamic Inference Network for Group Activity Recognition},
  author={Yuan, Hangjie and Ni, Dong and Wang, Mang},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={7476--7485},
  year={2021}
}

Dependencies

  • Software Environment: Linux (CentOS 7)
  • Hardware Environment: NVIDIA TITAN RTX
  • Python 3.6
  • PyTorch 1.2.0, Torchvision 0.4.0
  • RoIAlign for Pytorch

Prepare Datasets

  1. Download publicly available datasets from following links: Volleyball dataset and Collective Activity dataset.
  2. Unzip the dataset file into data/volleyball or data/collective.
  3. Download the file tracks_normalized.pkl from cvlab-epfl/social-scene-understanding and put it into data/volleyball/videos

Using Docker

  1. Checkout repository and cd PROJECT_PATH

  2. Build the Docker container

docker build -t din_gar https://github.com/JacobYuan7/DIN_GAR.git#main
  1. Run the Docker container
docker run --shm-size=2G -v data/volleyball:/opt/DIN_GAR/data/volleyball -v result:/opt/DIN_GAR/result --rm -it din_gar
  • --shm-size=2G: To prevent ERROR: Unexpected bus error encountered in worker. This might be caused by insufficient shared memory (shm)., you have to extend the container's shared memory size. Alternatively: --ipc=host
  • -v data/volleyball:/opt/DIN_GAR/data/volleyball: Makes the host's folder data/volleyball available inside the container at /opt/DIN_GAR/data/volleyball
  • -v result:/opt/DIN_GAR/result: Makes the host's folder result available inside the container at /opt/DIN_GAR/result
  • -it & --rm: Starts the container with an interactive session (PROJECT_PATH is /opt/DIN_GAR) and removes the container after closing the session.
  • din_gar the name/tag of the image
  • optional: --gpus='"device=7"' restrict the GPU devices the container can access.

Get Started

  1. Train the Base Model: Fine-tune the base model for the dataset.

    # Volleyball dataset
    cd PROJECT_PATH 
    python scripts/train_volleyball_stage1.py
    
    # Collective Activity dataset
    cd PROJECT_PATH 
    python scripts/train_collective_stage1.py
  2. Train with the reasoning module: Append the reasoning modules onto the base model to get a reasoning model.

    1. Volleyball dataset

      • DIN

        python scripts/train_volleyball_stage2_dynamic.py
        
      • lite DIN
        We can run DIN in lite version by setting cfg.lite_dim = 128 in scripts/train_volleyball_stage2_dynamic.py.

        python scripts/train_volleyball_stage2_dynamic.py
        
      • ST-factorized DIN
        We can run ST-factorized DIN by setting cfg.ST_kernel_size = [(1,3),(3,1)] and cfg.hierarchical_inference = True.

        Note that if you set cfg.hierarchical_inference = False, cfg.ST_kernel_size = [(1,3),(3,1)] and cfg.num_DIN = 2, then multiple interaction fields run in parallel.

        python scripts/train_volleyball_stage2_dynamic.py
        

      Other model re-implemented by us according to their papers or publicly available codes:

      • AT
        python scripts/train_volleyball_stage2_at.py
        
      • PCTDM
        python scripts/train_volleyball_stage2_pctdm.py
        
      • SACRF
        python scripts/train_volleyball_stage2_sacrf_biute.py
        
      • ARG
        python scripts/train_volleyball_stage2_arg.py
        
      • HiGCIN
        python scripts/train_volleyball_stage2_higcin.py
        
    2. Collective Activity dataset

      • DIN
        python scripts/train_collective_stage2_dynamic.py
        
      • DIN lite
        We can run DIN in lite version by setting 'cfg.lite_dim = 128' in 'scripts/train_collective_stage2_dynamic.py'.
        python scripts/train_collective_stage2_dynamic.py
        

Another work done by us, solving GAR from the perspective of incorporating visual context, is also available.

@inproceedings{yuan2021visualcontext,
  title={Learning Visual Context for Group Activity Recognition},
  author={Yuan, Hangjie and Ni, Dong},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={35},
  number={4},
  pages={3261--3269},
  year={2021}
}
Owner
A Ph.D. candidate and a realistic idealist.
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

CoCLR: Self-supervised Co-Training for Video Representation Learning This repository contains the implementation of: InfoNCE (MoCo on videos) UberNCE

Tengda Han 271 Jan 02, 2023
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.

Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)

Christian Henning 1 Nov 05, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022