A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

Related tags

Deep LearningPoseRBPF
Overview

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF

Citing PoseRBPF

If you find the PoseRBPF code useful, please consider citing:

@inproceedings{deng2019pose,
author    = {Xinke Deng and Arsalan Mousavian and Yu Xiang and Fei Xia and Timothy Bretl and Dieter Fox},
title     = {PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking},
booktitle = {Robotics: Science and Systems (RSS)},
year      = {2019}
}
@inproceedings{deng2020self,
author    = {Xinke Deng and Yu Xiang and Arsalan Mousavian and Clemens Eppner and Timothy Bretl and Dieter Fox},
title     = {Self-supervised 6D Object Pose Estimation for Robot Manipulation},
booktitle = {International Conference on Robotics and Automation (ICRA)},
year      = {2020}
}

Installation

git clone https://github.com/NVlabs/PoseRBPF.git --recursive

Install dependencies:

  • install anaconda according to the official website.
  • create the virtual env with pose_rbpf_env.yml:
conda env create -f pose_rbpf_env.yml
conda activate pose_rbpf_env
  • compile the YCB Renderer according to the instruction.
  • compile the utility functions with:
sh build.sh

Download

Downolad files as needed. Extract CAD models under the cad_models directory, and extract model weights under the checkpoints directory.

A quick demo on the YCB Video Dataset

demo

  • The demo shows tracking 003_cracker_box on YCB Video Dataset.
  • Run script download_demo.sh to download checkpoint (434 MB), CAD models (743 MB), 2D detections (13 MB), and necessary data (3 GB) for the demo:
./scripts/download_demo.sh
  • Then you should have files organized like:
├── ...
├── PoseRBPF
|   |── cad_models
|   |   |── ycb_models
|   |   └── ...
|   |── checkpoints
|   |   |── ycb_ckpts_roi_rgbd
|   |   |── ycb_codebooks_roi_rgbd
|   |   |── ycb_configs_roi_rgbd
|   |   └── ... 
|   |── detections
|   |   |── posecnn_detections
|   |   |── tless_retina_detections 
|   |── config                      # configuration files for training and DPF
|   |── networks                    # auto-encoder networks
|   |── pose_rbpf                   # particle filters
|   └── ...
|── YCB_Video_Dataset               # to store ycb data
|   |── cameras
|   |── data 
|   |── image_sets 
|   |── keyframes 
|   |── poses
|   └── ...
└── ...
  • Run demo with 003_cracker_box. The results will be stored in ./results/
./scripts/run_demo.sh

Online Real-world Pose Estimation using ROS

ros_demo

  • Due to the incompatibility between ROS Kinetic and Python 3, the ROS node only runs with Python 2.7. We first create the virtual env with pose_rbpf_env_py2.yml:
conda env create -f pose_rbpf_env_py2.yml
conda activate pose_rbpf_env_py2
  • compile the YCB Renderer according to the instruction.
  • compile the utility functions with:
sh build.sh
  • Make sure you can run the demo above first.
  • Install ROS if it's not there:
sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'
sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654
sudo apt-get update
sudo apt-get install ros-kinetic-desktop-full
  • Update python packages:
conda install -c auto catkin_pkg
pip install -U rosdep rosinstall_generator wstool rosinstall six vcstools
pip install msgpack
pip install empy
  • Source ROS (every time before launching the node):
source /opt/ros/kinetic/setup.bash
  • Initialze rosdep:
sudo rosdep init
rosdep update

Single object tracking demo:

  • Download demo rosbag:
./scripts/download_ros_demo.sh
  • Run PoseCNN node (with roscore running in another terminal, download PoseCNN weights first):
./scripts/run_ros_demo_posecnn.sh
  • Run PoseRBPF node for RGB-D tracking (with roscore running in another terminal):
./scripts/run_ros_demo.sh
  • (Optional) For RGB tracking run this command instead:
./scripts/run_ros_demo_rgb.sh
  • Run RVIZ in the PoseRBPF directory:
rosrun rviz rviz -d ./ros/tracking.rviz
  • Once you see *** PoseRBPF Ready ... in the PoseRBPF terminal, run rosbag in another terminal, then you should be able to see the tracking demo:
rosbag play ./ros_data/demo_single.bag

Multiple object tracking demo:

  • Download demo rosbag:
./scripts/download_ros_demo_multiple.sh
  • Run PoseCNN node (with roscore running in another terminal, download PoseCNN weights first):
./scripts/run_ros_demo_posecnn.sh
  • Run PoseRBPF node with self-supervised trained RGB Auto-encoder weights:
./scripts/run_ros_demo_rgb_multiple_ssv.sh
  • (Optional) Run PoseRBPF node with RGB-D Auto-encoder weights instead:
./scripts/run_ros_demo_multiple.sh
  • (Optional) Run PoseRBPF node with RGB Auto-encoder weights instead:
./scripts/run_ros_demo_rgb_multiple.sh
  • Run RVIZ in the PoseRBPF directory:
rosrun rviz rviz -d ./ros/tracking.rviz
  • Once you see *** PoseRBPF Ready ... in the PoseRBPF terminal, run rosbag in another terminal, then you should be able to see the tracking demo:
rosbag play ./ros_data/demo_multiple.bag

Note that PoseRBPF takes certain time to initialize each object before tracking. You can pause the ROS bag by pressing space for initialization, and then press space again to resume tracking.

Testing on the YCB Video Dataset

  • Download checkpoints from the google drive folder (ycb_rgbd_full.tar.gz or ycb_rgb_full.tar.gz) and unzip to the checkpoint directory.
  • Download all the data in the YCB Video Dataset so the ../YCB_Video_Dataset/data folder contains all the sequences.
  • Run RGB-D tracking (use 002_master_chef_can as an example here):
sh scripts/test_ycb_rgbd/val_ycb_002_rgbd.sh 0 1
  • Run RGB tracking (use 002_master_chef_can as an example here):
sh scripts/test_ycb_rgb/val_ycb_002_rgb.sh 0 1

Testing on the T-LESS Dataset

  • Download checkpoints from the google drive folder (tless_rgbd_full.tar.gz or tless_rgb_full.tar.gz) and unzip to the checkpoint directory.
  • Download all the data in the T-LESS Dataset so the ../TLess/ folder contains all the sequences.
  • Download all the models for T-LESS objects from the google drive folder.
  • Then you should have files organized like:
├── ...
├── PoseRBPF
|   |── cad_models
|   |   |── ycb_models
|   |   |── tless_models
|   |   └── ...
|   |── checkpoints
|   |   |── tless_ckpts_roi_rgbd
|   |   |── tless_codebooks_roi_rgbd
|   |   |── tless_configs_roi_rgbd
|   |   └── ... 
|   |── detections
|   |   |── posecnn_detections
|   |   |── tless_retina_detections 
|   |── config                      # configuration files for training and DPF
|   |── networks                    # auto-encoder networks
|   |── pose_rbpf                   # particle filters
|   └── ...
|── YCB_Video_Dataset               # to store ycb data
|   |── cameras  
|   |── data 
|   |── image_sets 
|   |── keyframes 
|   |── poses               
|   └── ...   
|── TLess               # to store tless data
|   |── t-less_v2 
|── tless_ckpts_roi_rgbd
|   |   |── test_primesense
|   |   └── ... 
|   └── ...        
└── ...
  • Run RGB-D tracking (use obj_01 as an example here):
sh scripts/test_tless_rgbd/val_tless_01_rgbd.sh 0 1
  • Run RGB tracking (use obj_01 as an example here):
sh scripts/test_tless_rgb/val_tless_01_rgb.sh 0 1

Testing on the DexYCB Dataset

  • Download checkpoints from the google drive folder (ycb_rgbd_full.tar.gz or ycb_rgb_full.tar.gz) and unzip to the checkpoint directory.

  • Download the DexYCB dataset from here.

  • Download PoseCNN results on the DexYCB dataset from here.

  • Create a symlink for the DexYCB dataset and the PoseCNN results

    cd $ROOT/data/DEX_YCB
    ln -s $dex_ycb_data data
    ln -s $results_posecnn_data results_posecnn
  • Install PyTorch PoseCNN layers according to the instructions here.

  • Run RGB-D tracking:

    ./scripts/test_dex_rgbd/dex_ycb_test_rgbd_s0.sh $GPU_ID
    
  • Run RGB tracking:

    ./scripts/test_dex_rgb/dex_ycb_test_rgb_s0.sh $GPU_ID
    

Training

  • Download microsoft coco dataset 2017 val images from here for data augmentation.
  • Store the folder val2017 in ../coco/
  • Run training example for 002_master_chef_can in the YCB objects. The training should be able to run on one single NVIDIA TITAN Xp GPU:
sh scripts/train_ycb_rgbd/train_script_ycb_002.sh

Acknowledgements

We have referred to part of the RoI align code from maskrcnn-benchmark.

License

PoseRBPF is licensed under the NVIDIA Source Code License - Non-commercial.

Owner
NVIDIA Research Projects
NVIDIA Research Projects
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
graph-theoretic framework for robust pairwise data association

CLIPPER: A Graph-Theoretic Framework for Robust Data Association Data association is a fundamental problem in robotics and autonomy. CLIPPER provides

MIT Aerospace Controls Laboratory 118 Dec 28, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

TraSw for FairMOT A Single-Target Attack example (Attack ID: 19; Screener ID: 24): Fig.1 Original Fig.2 Attacked By perturbing only two frames in this

Derry Lin 21 Dec 21, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

25 Dec 08, 2022
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022