《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Related tags

Deep LearningRUC
Overview

Improving Unsupervised Image Clustering With Robust Learning

This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust Learning (RUC)"

Improving Unsupervised Image Clustering With Robust Learning

Sungwon Park, Sungwon Han, Sundong Kim, Danu Kim, Sungkyu Park, Seunghoon Hong, Meeyoung Cha.

Highlight

  1. RUC is an add-on module to enhance the performance of any off-the-shelf unsupervised learning algorithms. RUC is inspired by robust learning. It first divides clustered data points into clean and noisy set, then refine the clustering results. With RUC, state-of-the-art unsupervised clustering methods; SCAN and TSUC showed showed huge performance improvements. (STL-10 : 86.7%, CIFAR-10 : 90.3%, CIFAR-20 : 54.3%)

  1. Prediction results of existing unsupervised learning algorithms were overconfident. RUC can make the prediction of existing algorithms softer with better calibration.

  1. Robust to adversarially crafted samples. ERM-based unsupervised clustering algorithms can be prone to adversarial attack. Adding RUC to the clustering models improves robustness against adversarial noise.

  1. Robust to adversarially crafted samples. ERM-based unsupervised clustering algorithms can be prone to adversarial attack. Adding RUC to the clustering models improves robustness against adversarial noise.

Required packages

  • python == 3.6.10
  • pytorch == 1.1.0
  • scikit-learn == 0.21.2
  • scipy == 1.3.0
  • numpy == 1.18.5
  • pillow == 7.1.2

Overall model architecture

Usage

usage: main_ruc_[dataset].py [-h] [--lr LR] [--momentum M] [--weight_decay W]
                         [--epochs EPOCHS] [--batch_size B] [--s_thr S_THR]
                         [--n_num N_NUM] [--o_model O_MODEL]
                         [--e_model E_MODEL] [--seed SEED]

config for RUC

optional arguments:
  -h, --help            show this help message and exit
  --lr LR               initial learning rate
  --momentum M          momentum
  --weight_decay        weight decay
  --epochs EPOCHS       max epoch per round. (default: 200)
  --batch_size B        training batch size
  --s_thr S_THR         confidence sampling threshold
  --n_num N_NUM         the number of neighbor for metric sampling
  --o_model O_MODEL     original model path
  --e_model E_MODEL     embedding model path
  --seed SEED           random seed

Model ZOO

Currently, we support the pretrained model for our model. We used the pretrained SCAN and SimCLR model from SCAN github.

Dataset Download link
CIFAR-10 Download
CIFAR-20 Download
STL-10 Download

Citation

If you find this repo useful for your research, please consider citing our paper:

@article{park2020improving,
  title={Improving Unsupervised Image Clustering With Robust Learning},
  author={Park, Sungwon and Han, Sungwon and Kim, Sundong and Kim, Danu and Park, Sungkyu and Hong, Seunghoon and Cha, Meeyoung},
  journal={arXiv preprint arXiv:2012.11150},
  year={2020}
}
Owner
Sungwon Park
Master Student in KAIST, School of Computing
Sungwon Park
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
An introduction to satellite image analysis using Python + OpenCV and JavaScript + Google Earth Engine

A Gentle Introduction to Satellite Image Processing Welcome to this introductory course on Satellite Image Analysis! Satellite imagery has become a pr

Edward Oughton 32 Jan 03, 2023
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
113 Nov 28, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022