PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

Overview

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

This is the official repository of PRIME, the data agumentation method introduced in the paper: "PRIME: A Few Primitives Can Boost Robustness to Common Corruptions". PRIME is a generic, plug-n-play data augmentation scheme that consists of simple families of max-entropy image transformations for conferring robustness to common corruptions. PRIME leads to significant improvements in corruption robustness on multiple benchmarks.

Pre-trained models

We provide different models trained with PRIME on CIFAR-10/100 and ImageNet datasets. You can download them from here.

Setup

This code has been tested with Python 3.8.5 and PyTorch 1.9.1. To install required dependencies run:

$ pip install -r requirements.txt

For corruption robustness evaluation, download and extract the CIFAR-10-C, CIFAR-100-C and ImageNet-C datasets from here.

Usage

We provide a script train.py for PRIME training on CIFAR-10/100, ImageNet-100 and ImageNet. For example, to train a ResNet-50 network on ImageNet with PRIME, run:

$ python -u train.py --config=config/imagenet_cfg.py \
    --config.save_dir=<save_dir> \
    --config.data_dir=<data_dir> \
    --config.cc_dir=<common_corr_dir> \
    --config.use_prime=True

Detailed configuration options can be found in config.

Results

Results on ImageNet/ImageNet-100 with a ResNet-50/ResNet-18 (†: without JSD loss)

Dataset Method   Clean (↑) CC Acc (↑)    mCE (↓)
ImageNet Standard 76.1 38.1 76.1
ImageNet AugMix 77.5 48.3 65.3
ImageNet DeepAugment 76.7 52.6 60.4
ImageNet PRIME† 77.0 55.0 57.5
ImageNet-100 Standard 88.0 49.7 100
ImageNet-100 AugMix 88.7 60.7 79.1
ImageNet-100 DeepAugment 86.3 67.7 68.1
ImageNet-100 PRIME 85.9 71.6 61.0

Results on CIFAR-10/100 with a ResNet-18

Dataset    Method            Clean (↑) CC Acc (↑)    mCE (↓)
CIFAR-10 Standard 95.0 74.0 24.0
CIFAR-10 AugMix 95.2 88.6 11.4
CIFAR-10 PRIME 93.1 89.0 11.0
CIFAR-100 Standard 76.7 51.9 48.1
CIFAR-100 AugMix 78.2 64.9 35.1
CIFAR-100 PRIME 77.6 68.3 31.7

Citing this work

@article{PRIME2021,
    title = {PRIME: A Few Primitives Can Boost Robustness to Common Corruptions}, 
    author = {Apostolos Modas and Rahul Rade and Guillermo {Ortiz-Jim\'enez} and Seyed-Mohsen {Moosavi-Dezfooli} and Pascal Frossard},
    year = {2021},
    journal = {arXiv preprint arXiv:2112.13547}
}
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba

PyKale 370 Dec 27, 2022
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
A PyTorch toolkit for 2D Human Pose Estimation.

PyTorch-Pose PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface

Wei Yang 1.1k Dec 30, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022