PyTorch ,ONNX and TensorRT implementation of YOLOv4

Overview

Pytorch-YOLOv4

A minimal PyTorch implementation of YOLOv4.

├── README.md
├── dataset.py            dataset
├── demo.py               demo to run pytorch --> tool/darknet2pytorch
├── demo_darknet2onnx.py  tool to convert into onnx --> tool/darknet2pytorch
├── demo_pytorch2onnx.py  tool to convert into onnx
├── models.py             model for pytorch
├── train.py              train models.py
├── cfg.py                cfg.py for train
├── cfg                   cfg --> darknet2pytorch
├── data            
├── weight                --> darknet2pytorch
├── tool
│   ├── camera.py           a demo camera
│   ├── coco_annotation.py       coco dataset generator
│   ├── config.py
│   ├── darknet2pytorch.py
│   ├── region_loss.py
│   ├── utils.py
│   └── yolo_layer.py

image

0. Weights Download

0.1 darknet

0.2 pytorch

you can use darknet2pytorch to convert it yourself, or download my converted model.

1. Train

use yolov4 to train your own data

  1. Download weight

  2. Transform data

    For coco dataset,you can use tool/coco_annotation.py.

    # train.txt
    image_path1 x1,y1,x2,y2,id x1,y1,x2,y2,id x1,y1,x2,y2,id ...
    image_path2 x1,y1,x2,y2,id x1,y1,x2,y2,id x1,y1,x2,y2,id ...
    ...
    ...
    
  3. Train

    you can set parameters in cfg.py.

     python train.py -g [GPU_ID] -dir [Dataset direction] ...
    

2. Inference

2.1 Performance on MS COCO dataset (using pretrained DarknetWeights from https://github.com/AlexeyAB/darknet)

ONNX and TensorRT models are converted from Pytorch (TianXiaomo): Pytorch->ONNX->TensorRT. See following sections for more details of conversions.

  • val2017 dataset (input size: 416x416)
Model type AP AP50 AP75 APS APM APL
DarkNet (YOLOv4 paper) 0.471 0.710 0.510 0.278 0.525 0.636
Pytorch (TianXiaomo) 0.466 0.704 0.505 0.267 0.524 0.629
TensorRT FP32 + BatchedNMSPlugin 0.472 0.708 0.511 0.273 0.530 0.637
TensorRT FP16 + BatchedNMSPlugin 0.472 0.708 0.511 0.273 0.530 0.636
  • testdev2017 dataset (input size: 416x416)
Model type AP AP50 AP75 APS APM APL
DarkNet (YOLOv4 paper) 0.412 0.628 0.443 0.204 0.444 0.560
Pytorch (TianXiaomo) 0.404 0.615 0.436 0.196 0.438 0.552
TensorRT FP32 + BatchedNMSPlugin 0.412 0.625 0.445 0.200 0.446 0.564
TensorRT FP16 + BatchedNMSPlugin 0.412 0.625 0.445 0.200 0.446 0.563

2.2 Image input size for inference

Image input size is NOT restricted in 320 * 320, 416 * 416, 512 * 512 and 608 * 608. You can adjust your input sizes for a different input ratio, for example: 320 * 608. Larger input size could help detect smaller targets, but may be slower and GPU memory exhausting.

height = 320 + 96 * n, n in {0, 1, 2, 3, ...}
width  = 320 + 96 * m, m in {0, 1, 2, 3, ...}

2.3 Different inference options

  • Load the pretrained darknet model and darknet weights to do the inference (image size is configured in cfg file already)

    python demo.py -cfgfile <cfgFile> -weightfile <weightFile> -imgfile <imgFile>
  • Load pytorch weights (pth file) to do the inference

    python models.py <num_classes> <weightfile> <imgfile> <IN_IMAGE_H> <IN_IMAGE_W> <namefile(optional)>
  • Load converted ONNX file to do inference (See section 3 and 4)

  • Load converted TensorRT engine file to do inference (See section 5)

2.4 Inference output

There are 2 inference outputs.

  • One is locations of bounding boxes, its shape is [batch, num_boxes, 1, 4] which represents x1, y1, x2, y2 of each bounding box.
  • The other one is scores of bounding boxes which is of shape [batch, num_boxes, num_classes] indicating scores of all classes for each bounding box.

Until now, still a small piece of post-processing including NMS is required. We are trying to minimize time and complexity of post-processing.

3. Darknet2ONNX

  • This script is to convert the official pretrained darknet model into ONNX

  • Pytorch version Recommended:

    • Pytorch 1.4.0 for TensorRT 7.0 and higher
    • Pytorch 1.5.0 and 1.6.0 for TensorRT 7.1.2 and higher
  • Install onnxruntime

    pip install onnxruntime
  • Run python script to generate ONNX model and run the demo

    python demo_darknet2onnx.py <cfgFile> <weightFile> <imageFile> <batchSize>

3.1 Dynamic or static batch size

  • Positive batch size will generate ONNX model of static batch size, otherwise, batch size will be dynamic
    • Dynamic batch size will generate only one ONNX model
    • Static batch size will generate 2 ONNX models, one is for running the demo (batch_size=1)

4. Pytorch2ONNX

  • You can convert your trained pytorch model into ONNX using this script

  • Pytorch version Recommended:

    • Pytorch 1.4.0 for TensorRT 7.0 and higher
    • Pytorch 1.5.0 and 1.6.0 for TensorRT 7.1.2 and higher
  • Install onnxruntime

    pip install onnxruntime
  • Run python script to generate ONNX model and run the demo

    python demo_pytorch2onnx.py <weight_file> <image_path> <batch_size> <n_classes> <IN_IMAGE_H> <IN_IMAGE_W>

    For example:

    python demo_pytorch2onnx.py yolov4.pth dog.jpg 8 80 416 416

4.1 Dynamic or static batch size

  • Positive batch size will generate ONNX model of static batch size, otherwise, batch size will be dynamic
    • Dynamic batch size will generate only one ONNX model
    • Static batch size will generate 2 ONNX models, one is for running the demo (batch_size=1)

5. ONNX2TensorRT

  • TensorRT version Recommended: 7.0, 7.1

5.1 Convert from ONNX of static Batch size

  • Run the following command to convert YOLOv4 ONNX model into TensorRT engine

    trtexec --onnx=<onnx_file> --explicitBatch --saveEngine=<tensorRT_engine_file> --workspace=<size_in_megabytes> --fp16
    • Note: If you want to use int8 mode in conversion, extra int8 calibration is needed.

5.2 Convert from ONNX of dynamic Batch size

  • Run the following command to convert YOLOv4 ONNX model into TensorRT engine

    trtexec --onnx=<onnx_file> \
    --minShapes=input:<shape_of_min_batch> --optShapes=input:<shape_of_opt_batch> --maxShapes=input:<shape_of_max_batch> \
    --workspace=<size_in_megabytes> --saveEngine=<engine_file> --fp16
  • For example:

    trtexec --onnx=yolov4_-1_3_320_512_dynamic.onnx \
    --minShapes=input:1x3x320x512 --optShapes=input:4x3x320x512 --maxShapes=input:8x3x320x512 \
    --workspace=2048 --saveEngine=yolov4_-1_3_320_512_dynamic.engine --fp16

5.3 Run the demo

python demo_trt.py <tensorRT_engine_file> <input_image> <input_H> <input_W>
  • This demo here only works when batchSize is dynamic (1 should be within dynamic range) or batchSize=1, but you can update this demo a little for other dynamic or static batch sizes.

  • Note1: input_H and input_W should agree with the input size in the original ONNX file.

  • Note2: extra NMS operations are needed for the tensorRT output. This demo uses python NMS code from tool/utils.py.

6. ONNX2Tensorflow

7. ONNX2TensorRT and DeepStream Inference

  1. Compile the DeepStream Nvinfer Plugin
    cd DeepStream
    make 
  1. Build a TRT Engine.

For single batch,

trtexec --onnx= --explicitBatch --saveEngine= --workspace= --fp16

For multi-batch,

trtexec --onnx= --explicitBatch --shapes=input:Xx3xHxW --optShapes=input:Xx3xHxW --maxShapes=input:Xx3xHxW --minShape=input:1x3xHxW --saveEngine= --fp16

Note :The maxShapes could not be larger than model original shape.

  1. Write the deepstream config file for the TRT Engine.

Reference:

@article{yolov4,
  title={YOLOv4: YOLOv4: Optimal Speed and Accuracy of Object Detection},
  author={Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao},
  journal = {arXiv},
  year={2020}
}
Owner
DL CV OCR and algorithm optimization
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
wlad 2 Dec 19, 2022
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

4.8k Jan 07, 2023
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
使用深度学习框架提取视频硬字幕;docker容器免安装深度学习库,使用本地api接口使得界面和后端识别分离;

extract-video-subtittle 使用深度学习框架提取视频硬字幕; 本地识别无需联网; CPU识别速度可观; 容器提供API接口; 运行环境 本项目运行环境非常好搭建,我做好了docker容器免安装各种深度学习包; 提供windows界面操作; 容器为CPU版本; 视频演示 https

歌者 16 Aug 06, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023