PyTorch ,ONNX and TensorRT implementation of YOLOv4

Overview

Pytorch-YOLOv4

A minimal PyTorch implementation of YOLOv4.

├── README.md
├── dataset.py            dataset
├── demo.py               demo to run pytorch --> tool/darknet2pytorch
├── demo_darknet2onnx.py  tool to convert into onnx --> tool/darknet2pytorch
├── demo_pytorch2onnx.py  tool to convert into onnx
├── models.py             model for pytorch
├── train.py              train models.py
├── cfg.py                cfg.py for train
├── cfg                   cfg --> darknet2pytorch
├── data            
├── weight                --> darknet2pytorch
├── tool
│   ├── camera.py           a demo camera
│   ├── coco_annotation.py       coco dataset generator
│   ├── config.py
│   ├── darknet2pytorch.py
│   ├── region_loss.py
│   ├── utils.py
│   └── yolo_layer.py

image

0. Weights Download

0.1 darknet

0.2 pytorch

you can use darknet2pytorch to convert it yourself, or download my converted model.

1. Train

use yolov4 to train your own data

  1. Download weight

  2. Transform data

    For coco dataset,you can use tool/coco_annotation.py.

    # train.txt
    image_path1 x1,y1,x2,y2,id x1,y1,x2,y2,id x1,y1,x2,y2,id ...
    image_path2 x1,y1,x2,y2,id x1,y1,x2,y2,id x1,y1,x2,y2,id ...
    ...
    ...
    
  3. Train

    you can set parameters in cfg.py.

     python train.py -g [GPU_ID] -dir [Dataset direction] ...
    

2. Inference

2.1 Performance on MS COCO dataset (using pretrained DarknetWeights from https://github.com/AlexeyAB/darknet)

ONNX and TensorRT models are converted from Pytorch (TianXiaomo): Pytorch->ONNX->TensorRT. See following sections for more details of conversions.

  • val2017 dataset (input size: 416x416)
Model type AP AP50 AP75 APS APM APL
DarkNet (YOLOv4 paper) 0.471 0.710 0.510 0.278 0.525 0.636
Pytorch (TianXiaomo) 0.466 0.704 0.505 0.267 0.524 0.629
TensorRT FP32 + BatchedNMSPlugin 0.472 0.708 0.511 0.273 0.530 0.637
TensorRT FP16 + BatchedNMSPlugin 0.472 0.708 0.511 0.273 0.530 0.636
  • testdev2017 dataset (input size: 416x416)
Model type AP AP50 AP75 APS APM APL
DarkNet (YOLOv4 paper) 0.412 0.628 0.443 0.204 0.444 0.560
Pytorch (TianXiaomo) 0.404 0.615 0.436 0.196 0.438 0.552
TensorRT FP32 + BatchedNMSPlugin 0.412 0.625 0.445 0.200 0.446 0.564
TensorRT FP16 + BatchedNMSPlugin 0.412 0.625 0.445 0.200 0.446 0.563

2.2 Image input size for inference

Image input size is NOT restricted in 320 * 320, 416 * 416, 512 * 512 and 608 * 608. You can adjust your input sizes for a different input ratio, for example: 320 * 608. Larger input size could help detect smaller targets, but may be slower and GPU memory exhausting.

height = 320 + 96 * n, n in {0, 1, 2, 3, ...}
width  = 320 + 96 * m, m in {0, 1, 2, 3, ...}

2.3 Different inference options

  • Load the pretrained darknet model and darknet weights to do the inference (image size is configured in cfg file already)

    python demo.py -cfgfile <cfgFile> -weightfile <weightFile> -imgfile <imgFile>
  • Load pytorch weights (pth file) to do the inference

    python models.py <num_classes> <weightfile> <imgfile> <IN_IMAGE_H> <IN_IMAGE_W> <namefile(optional)>
  • Load converted ONNX file to do inference (See section 3 and 4)

  • Load converted TensorRT engine file to do inference (See section 5)

2.4 Inference output

There are 2 inference outputs.

  • One is locations of bounding boxes, its shape is [batch, num_boxes, 1, 4] which represents x1, y1, x2, y2 of each bounding box.
  • The other one is scores of bounding boxes which is of shape [batch, num_boxes, num_classes] indicating scores of all classes for each bounding box.

Until now, still a small piece of post-processing including NMS is required. We are trying to minimize time and complexity of post-processing.

3. Darknet2ONNX

  • This script is to convert the official pretrained darknet model into ONNX

  • Pytorch version Recommended:

    • Pytorch 1.4.0 for TensorRT 7.0 and higher
    • Pytorch 1.5.0 and 1.6.0 for TensorRT 7.1.2 and higher
  • Install onnxruntime

    pip install onnxruntime
  • Run python script to generate ONNX model and run the demo

    python demo_darknet2onnx.py <cfgFile> <weightFile> <imageFile> <batchSize>

3.1 Dynamic or static batch size

  • Positive batch size will generate ONNX model of static batch size, otherwise, batch size will be dynamic
    • Dynamic batch size will generate only one ONNX model
    • Static batch size will generate 2 ONNX models, one is for running the demo (batch_size=1)

4. Pytorch2ONNX

  • You can convert your trained pytorch model into ONNX using this script

  • Pytorch version Recommended:

    • Pytorch 1.4.0 for TensorRT 7.0 and higher
    • Pytorch 1.5.0 and 1.6.0 for TensorRT 7.1.2 and higher
  • Install onnxruntime

    pip install onnxruntime
  • Run python script to generate ONNX model and run the demo

    python demo_pytorch2onnx.py <weight_file> <image_path> <batch_size> <n_classes> <IN_IMAGE_H> <IN_IMAGE_W>

    For example:

    python demo_pytorch2onnx.py yolov4.pth dog.jpg 8 80 416 416

4.1 Dynamic or static batch size

  • Positive batch size will generate ONNX model of static batch size, otherwise, batch size will be dynamic
    • Dynamic batch size will generate only one ONNX model
    • Static batch size will generate 2 ONNX models, one is for running the demo (batch_size=1)

5. ONNX2TensorRT

  • TensorRT version Recommended: 7.0, 7.1

5.1 Convert from ONNX of static Batch size

  • Run the following command to convert YOLOv4 ONNX model into TensorRT engine

    trtexec --onnx=<onnx_file> --explicitBatch --saveEngine=<tensorRT_engine_file> --workspace=<size_in_megabytes> --fp16
    • Note: If you want to use int8 mode in conversion, extra int8 calibration is needed.

5.2 Convert from ONNX of dynamic Batch size

  • Run the following command to convert YOLOv4 ONNX model into TensorRT engine

    trtexec --onnx=<onnx_file> \
    --minShapes=input:<shape_of_min_batch> --optShapes=input:<shape_of_opt_batch> --maxShapes=input:<shape_of_max_batch> \
    --workspace=<size_in_megabytes> --saveEngine=<engine_file> --fp16
  • For example:

    trtexec --onnx=yolov4_-1_3_320_512_dynamic.onnx \
    --minShapes=input:1x3x320x512 --optShapes=input:4x3x320x512 --maxShapes=input:8x3x320x512 \
    --workspace=2048 --saveEngine=yolov4_-1_3_320_512_dynamic.engine --fp16

5.3 Run the demo

python demo_trt.py <tensorRT_engine_file> <input_image> <input_H> <input_W>
  • This demo here only works when batchSize is dynamic (1 should be within dynamic range) or batchSize=1, but you can update this demo a little for other dynamic or static batch sizes.

  • Note1: input_H and input_W should agree with the input size in the original ONNX file.

  • Note2: extra NMS operations are needed for the tensorRT output. This demo uses python NMS code from tool/utils.py.

6. ONNX2Tensorflow

7. ONNX2TensorRT and DeepStream Inference

  1. Compile the DeepStream Nvinfer Plugin
    cd DeepStream
    make 
  1. Build a TRT Engine.

For single batch,

trtexec --onnx= --explicitBatch --saveEngine= --workspace= --fp16

For multi-batch,

trtexec --onnx= --explicitBatch --shapes=input:Xx3xHxW --optShapes=input:Xx3xHxW --maxShapes=input:Xx3xHxW --minShape=input:1x3xHxW --saveEngine= --fp16

Note :The maxShapes could not be larger than model original shape.

  1. Write the deepstream config file for the TRT Engine.

Reference:

@article{yolov4,
  title={YOLOv4: YOLOv4: Optimal Speed and Accuracy of Object Detection},
  author={Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao},
  journal = {arXiv},
  year={2020}
}
Owner
DL CV OCR and algorithm optimization
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Facebook Research 712 Dec 19, 2022
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

Tong WU 89 Dec 15, 2022
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
YOLO-v5 기반 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능 구현

자율 주행차의 영상 기반 차간거리 유지 개발 Table of Contents 프로젝트 소개 주요 기능 시스템 구조 디렉토리 구조 결과 실행 방법 참조 팀원 프로젝트 소개 YOLO-v5 기반으로 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adap

14 Jun 29, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022