Code and Resources for the Transformer Encoder Reasoning Network (TERN)

Related tags

Deep LearningTERN
Overview

Transformer Encoder Reasoning Network

Code for the cross-modal visual-linguistic retrieval method from "Transformer Reasoning Network for Image-Text Matching and Retrieval", accepted to ICPR 2020 [Pre-print PDF].

This repo is built on top of VSE++.

Setup

  1. Clone the repo and move into it:
git clone https://github.com/mesnico/TERN
cd TERN
  1. Setup python environment using conda:
conda env create --file environment.yml
conda activate tern
export PYTHONPATH=.

Get the data

  1. Download and extract the data folder, containing COCO annotations, the splits by Karpathy et al. and ROUGEL - SPICE precomputed relevances:
wget http://datino.isti.cnr.it/tern/data.tar
tar -xvf data.tar
  1. Download the bottom-up features. We rearranged the ones provided by Anderson et al. in multiple .npy files, one for every image in the COCO dataset. This is beneficial during the dataloading phase. The following command extracts them under data/coco/. If you prefer another location, be sure to adjust the configuration file accordingly.
wget http://datino.isti.cnr.it/tern/features_36.tar
tar -xvf features_36.tar -C data/coco

Evaluate

Download our pre-trained TERN model:

wget http://datino.isti.cnr.it/tern/model_best_ndcg.pth

Then, issue the following commands for evaluating the model on the 1k (5fold cross-validation) or 5k test sets.

python3 test.py model_best_ndcg.pth --config configs/tern.yaml --size 1k
python3 test.py model_best_ndcg.pth --config configs/tern.yaml --size 5k

Train

In order to train the model using the basic TERN configuration, issue the following command:

python3 train.py --config configs/tern.yaml --logger_name runs/tern

runs/tern is where the output files (tensorboard logs, checkpoints) will be stored during this training session.

Reference

If you found this code useful, please cite the following paper:

@article{messina2020transformer,
  title={Transformer Reasoning Network for Image-Text Matching and Retrieval},
  author={Messina, Nicola and Falchi, Fabrizio and Esuli, Andrea and Amato, Giuseppe},
  journal={arXiv preprint arXiv:2004.09144},
  year={2020}
}

License

Apache License 2.0

Owner
Nicola Messina
PhD student at ISTI-CNR, Pisa, Italy. I'm interested in the secrets of intelligence and nature, and I'm passionate about Computer Vision and Deep Learning.
Nicola Messina
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
Official implementation of Few-Shot and Continual Learning with Attentive Independent Mechanisms

Few-Shot and Continual Learning with Attentive Independent Mechanisms This repository is the official implementation of Few-Shot and Continual Learnin

Chikan_Huang 25 Dec 08, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022