Universal Probability Distributions with Optimal Transport and Convex Optimization

Overview

Sylvester normalizing flows for variational inference

Pytorch implementation of Sylvester normalizing flows, based on our paper:

Sylvester normalizing flows for variational inference (UAI 2018)
Rianne van den Berg*, Leonard Hasenclever*, Jakub Tomczak, Max Welling

*Equal contribution

Requirements

The latest release of the code is compatible with:

  • pytorch 1.0.0

  • python 3.7

Thanks to Martin Engelcke for adapting the code to provide this compatibility.

Version v0.3.0_2.7 is compatible with:

  • pytorch 0.3.0 WARNING: More recent versions of pytorch have different default flags for the binary cross entropy loss module: nn.BCELoss(). You have to adapt the appropriate flags if you want to port this code to a later vers
    ion.

  • python 2.7

Data

The experiments can be run on the following datasets:

  • static MNIST: dataset is in data folder;
  • OMNIGLOT: the dataset can be downloaded from link;
  • Caltech 101 Silhouettes: the dataset can be downloaded from link.
  • Frey Faces: the dataset can be downloaded from link.

Usage

Below, example commands are given for running experiments on static MNIST with different types of Sylvester normalizing flows, for 4 flows:

Orthogonal Sylvester flows
This example uses a bottleneck of size 8 (Q has 8 columns containing orthonormal vectors).

python main_experiment.py -d mnist -nf 4 --flow orthogonal --num_ortho_vecs 8 

Householder Sylvester flows
This example uses 8 Householder reflections per orthogonal matrix Q.

python main_experiment.py -d mnist -nf 4 --flow householder --num_householder 8

Triangular Sylvester flows

python main_experiment.py -d mnist -nf 4 --flow triangular 

To run an experiment with other types of normalizing flows or just with a factorized Gaussian posterior, see below.


Factorized Gaussian posterior

python main_experiment.py -d mnist --flow no_flow

Planar flows

python main_experiment.py -d mnist -nf 4 --flow planar

Inverse Autoregressive flows
This examples uses MADEs with 320 hidden units.

python main_experiment.py -d mnist -nf 4 --flow iaf --made_h_size 320

More information about additional argument options can be found by running ```python main_experiment.py -h```

Cite

Please cite our paper if you use this code in your own work:

@inproceedings{vdberg2018sylvester,
  title={Sylvester normalizing flows for variational inference},
  author={van den Berg, Rianne and Hasenclever, Leonard and Tomczak, Jakub and Welling, Max},
  booktitle={proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI)},
  year={2018}
}
Comments
  • about log_p_zk

    about log_p_zk

    Hi Rianne, This is a great code, and I have a little question about logp(zk), we hope p(zk) in VAE can be a distribution whose form is no fixed, but it seems that the calculate of logp(zk) in line81 of loss.py imply that p(zk) is a standard Gaussion. Are there some mistakes about my understanding?
    Thank your for this code

    opened by Archer666 10
  • loss = bce + beta * kl

    loss = bce + beta * kl

    hello Rianne: Thanks very much. I am a bit confused with line 44 in loss.py : loss = bce + beta * kl. Based on equation 3 in Tomczak's paper (Improving Variational Auto-Encoder Using Householder Flows), shouldn't "loss = bce - beta * kl "? Also, why use -ELBO instead of ELBO when reporting your metrics? Thanks

    opened by tumis1946 4
  • PyTorch_v1 and Python3 compatibility

    PyTorch_v1 and Python3 compatibility

    Hi Rianne,

    This PR contains a 'minimal' set of changes to run the code with the latest PyTorch versions and Python 3 ( #1 #2 )

    It is 'minimal' in the sense that I only made changes that affect functionality. There are additional cosmetic changes that could be made; e.g. Variable(), the volatile flag, and F.sigmoid() have been deprecated but they should not affect functionality.

    I tested the changes with PyTorch 1.0.0 and Python 3.7 on MNIST and Freyfaces, giving me similar results for the baseline VAE without any flows.

    I am not sure if more rigorous test should be done and if you want to merge this into master or keep a separate branch.

    Best, Martin

    opened by martinengelcke 1
  • PR for PyTorch 1.+ and Python 3 support

    PR for PyTorch 1.+ and Python 3 support

    Hi Rianne,

    Thank you for this really nice code release :)

    I cloned the repo and made some changes so that it runs with PyTorch 1.+ and Python 3. Also solved the issue mentioned in #1 . I tested the changes on MNIST (binary input) and Freyfaces (multinomial input), giving similar results to the original code.

    If you are interested in reviewing and potentially adding this to the repo, I would be happy to clean things up and make a PR.

    Best, Martin

    opened by martinengelcke 1
  • RuntimeError in default main experiment

    RuntimeError in default main experiment

    Hi Rianne,

    I'm trying to run the default experiment on cpu with a small latent space dimension (z=5):

    python main_experiment.py -d mnist --flow no_flow -nc --z_size 5

    Which unfortunately gives the following error:

    Traceback (most recent call last):
      File "main_experiment.py", line 278, in <module>
        run(args, kwargs)
      File "main_experiment.py", line 189, in run
        tr_loss = train(epoch, train_loader, model, optimizer, args)
      File ".../sylvester-flows/optimization/training.py", line 39, in train
        loss.backward()
      File "//anaconda/envs/dl/lib/python3.6/site-packages/torch/tensor.py", line 102, in backward
        torch.autograd.backward(self, gradient, retain_graph, create_graph)
      File "//anaconda/envs/dl/lib/python3.6/site-packages/torch/autograd/__init__.py", line 90, in backward
        allow_unreachable=True)  # allow_unreachable flag
    RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
    

    I am using PyTorch version 1.0.0 and did not modify the code.

    opened by trdavidson 1
  • How to sample from latent distribution

    How to sample from latent distribution

    Hello,

    I was wondering how I can generate samples using the decoder network after training. In a VAE, I would just sample from the prior distribution z~N(0,1) and generate a data point using the decoder. In TriangularSylvesterVAE, however, I also have to provide hyperparameters lambda(x) that depend on the input. How can I sample from my latent distribution and generate samples from it?

    I am new to normalizing flows in general and would appreciate any help.

    opened by crlz182 2
Releases(v1.0.0_3.7)
  • v1.0.0_3.7(Jul 5, 2019)

    Sylvester Normalizing Flow repository compatible with Pytorch 1.0.0 and Python 3.7. Thanks to martinengelcke for taking care of this compatibility.

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0_2.7(Jul 5, 2019)

Owner
Rianne van den Berg
Senior researcher @Microsoft research Amsterdam. Formerly at Google Brain and University of Amsterdam
Rianne van den Berg
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
This is a simple plugin for Vim that allows you to use OpenAI Codex.

🤖 Vim Codex An AI plugin that does the work for you. This is a simple plugin for Vim that will allow you to use OpenAI Codex. To use this plugin you

Tom Dörr 195 Dec 28, 2022
[CVPR 2021] MiVOS - Scribble to Mask module

MiVOS (CVPR 2021) - Scribble To Mask Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] A simplistic network that turns scri

Rex Cheng 65 Dec 22, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022