Universal Probability Distributions with Optimal Transport and Convex Optimization

Overview

Sylvester normalizing flows for variational inference

Pytorch implementation of Sylvester normalizing flows, based on our paper:

Sylvester normalizing flows for variational inference (UAI 2018)
Rianne van den Berg*, Leonard Hasenclever*, Jakub Tomczak, Max Welling

*Equal contribution

Requirements

The latest release of the code is compatible with:

  • pytorch 1.0.0

  • python 3.7

Thanks to Martin Engelcke for adapting the code to provide this compatibility.

Version v0.3.0_2.7 is compatible with:

  • pytorch 0.3.0 WARNING: More recent versions of pytorch have different default flags for the binary cross entropy loss module: nn.BCELoss(). You have to adapt the appropriate flags if you want to port this code to a later vers
    ion.

  • python 2.7

Data

The experiments can be run on the following datasets:

  • static MNIST: dataset is in data folder;
  • OMNIGLOT: the dataset can be downloaded from link;
  • Caltech 101 Silhouettes: the dataset can be downloaded from link.
  • Frey Faces: the dataset can be downloaded from link.

Usage

Below, example commands are given for running experiments on static MNIST with different types of Sylvester normalizing flows, for 4 flows:

Orthogonal Sylvester flows
This example uses a bottleneck of size 8 (Q has 8 columns containing orthonormal vectors).

python main_experiment.py -d mnist -nf 4 --flow orthogonal --num_ortho_vecs 8 

Householder Sylvester flows
This example uses 8 Householder reflections per orthogonal matrix Q.

python main_experiment.py -d mnist -nf 4 --flow householder --num_householder 8

Triangular Sylvester flows

python main_experiment.py -d mnist -nf 4 --flow triangular 

To run an experiment with other types of normalizing flows or just with a factorized Gaussian posterior, see below.


Factorized Gaussian posterior

python main_experiment.py -d mnist --flow no_flow

Planar flows

python main_experiment.py -d mnist -nf 4 --flow planar

Inverse Autoregressive flows
This examples uses MADEs with 320 hidden units.

python main_experiment.py -d mnist -nf 4 --flow iaf --made_h_size 320

More information about additional argument options can be found by running ```python main_experiment.py -h```

Cite

Please cite our paper if you use this code in your own work:

@inproceedings{vdberg2018sylvester,
  title={Sylvester normalizing flows for variational inference},
  author={van den Berg, Rianne and Hasenclever, Leonard and Tomczak, Jakub and Welling, Max},
  booktitle={proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI)},
  year={2018}
}
Comments
  • about log_p_zk

    about log_p_zk

    Hi Rianne, This is a great code, and I have a little question about logp(zk), we hope p(zk) in VAE can be a distribution whose form is no fixed, but it seems that the calculate of logp(zk) in line81 of loss.py imply that p(zk) is a standard Gaussion. Are there some mistakes about my understanding?
    Thank your for this code

    opened by Archer666 10
  • loss = bce + beta * kl

    loss = bce + beta * kl

    hello Rianne: Thanks very much. I am a bit confused with line 44 in loss.py : loss = bce + beta * kl. Based on equation 3 in Tomczak's paper (Improving Variational Auto-Encoder Using Householder Flows), shouldn't "loss = bce - beta * kl "? Also, why use -ELBO instead of ELBO when reporting your metrics? Thanks

    opened by tumis1946 4
  • PyTorch_v1 and Python3 compatibility

    PyTorch_v1 and Python3 compatibility

    Hi Rianne,

    This PR contains a 'minimal' set of changes to run the code with the latest PyTorch versions and Python 3 ( #1 #2 )

    It is 'minimal' in the sense that I only made changes that affect functionality. There are additional cosmetic changes that could be made; e.g. Variable(), the volatile flag, and F.sigmoid() have been deprecated but they should not affect functionality.

    I tested the changes with PyTorch 1.0.0 and Python 3.7 on MNIST and Freyfaces, giving me similar results for the baseline VAE without any flows.

    I am not sure if more rigorous test should be done and if you want to merge this into master or keep a separate branch.

    Best, Martin

    opened by martinengelcke 1
  • PR for PyTorch 1.+ and Python 3 support

    PR for PyTorch 1.+ and Python 3 support

    Hi Rianne,

    Thank you for this really nice code release :)

    I cloned the repo and made some changes so that it runs with PyTorch 1.+ and Python 3. Also solved the issue mentioned in #1 . I tested the changes on MNIST (binary input) and Freyfaces (multinomial input), giving similar results to the original code.

    If you are interested in reviewing and potentially adding this to the repo, I would be happy to clean things up and make a PR.

    Best, Martin

    opened by martinengelcke 1
  • RuntimeError in default main experiment

    RuntimeError in default main experiment

    Hi Rianne,

    I'm trying to run the default experiment on cpu with a small latent space dimension (z=5):

    python main_experiment.py -d mnist --flow no_flow -nc --z_size 5

    Which unfortunately gives the following error:

    Traceback (most recent call last):
      File "main_experiment.py", line 278, in <module>
        run(args, kwargs)
      File "main_experiment.py", line 189, in run
        tr_loss = train(epoch, train_loader, model, optimizer, args)
      File ".../sylvester-flows/optimization/training.py", line 39, in train
        loss.backward()
      File "//anaconda/envs/dl/lib/python3.6/site-packages/torch/tensor.py", line 102, in backward
        torch.autograd.backward(self, gradient, retain_graph, create_graph)
      File "//anaconda/envs/dl/lib/python3.6/site-packages/torch/autograd/__init__.py", line 90, in backward
        allow_unreachable=True)  # allow_unreachable flag
    RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
    

    I am using PyTorch version 1.0.0 and did not modify the code.

    opened by trdavidson 1
  • How to sample from latent distribution

    How to sample from latent distribution

    Hello,

    I was wondering how I can generate samples using the decoder network after training. In a VAE, I would just sample from the prior distribution z~N(0,1) and generate a data point using the decoder. In TriangularSylvesterVAE, however, I also have to provide hyperparameters lambda(x) that depend on the input. How can I sample from my latent distribution and generate samples from it?

    I am new to normalizing flows in general and would appreciate any help.

    opened by crlz182 2
Releases(v1.0.0_3.7)
  • v1.0.0_3.7(Jul 5, 2019)

    Sylvester Normalizing Flow repository compatible with Pytorch 1.0.0 and Python 3.7. Thanks to martinengelcke for taking care of this compatibility.

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0_2.7(Jul 5, 2019)

Owner
Rianne van den Berg
Senior researcher @Microsoft research Amsterdam. Formerly at Google Brain and University of Amsterdam
Rianne van den Berg
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021