PyTorch reimplementation of minimal-hand (CVPR2020)

Overview

Minimal Hand Pytorch

Unofficial PyTorch reimplementation of minimal-hand (CVPR2020).

demo demo

you can also find in youtube or bilibili

This project reimplement following components :

  1. Training (DetNet) and Evaluation Code
  2. Shape Estimation
  3. Pose Estimation: Instead of IKNet in original paper, an analytical inverse kinematics method is used.

Offical project link: [minimal-hand]

Update

  • 2021/03/09 update about utils/LM.py, time cost drop from 12s/item to 1.57s/item

  • 2021/03/12 update about utils/LM.py, time cost drop from 1.57s/item to 0.27s/item

  • 2021/03/17 realtime perfomance is achieved when using PSO to estimate shape, coming soon

  • 2021/03/20 Add PSO to estimate shape. AUC is decreased by about 0.01 on STB and RHD datasets, and increased a little on EO and do datasets. Modifiy utlis/vis.py to improve realtime perfomance

  • 2021/03/24 Fixed some errors in calculating AUC. Update the 3D PCK AUC Diffenence.

Usage

  • Retrieve the code
git clone https://github.com/MengHao666/Minimal-Hand-pytorch
cd Minimal-Hand-pytorch
  • Create and activate the virtual environment with python dependencies
conda env create --file=environment.yml
conda activate minimal-hand-torch

Prepare MANO hand model

  1. Download MANO model from here and unzip it.

  2. Create an account by clicking Sign Up and provide your information

  3. Download Models and Code (the downloaded file should have the format mano_v*_*.zip). Note that all code and data from this download falls under the MANO license.

  4. unzip and copy the content of the models folder into the mano folder

  5. Your structure should look like this:

Minimal-Hand-pytorch/
   mano/
      models/
      webuser/

Download and Prepare datasets

Training dataset

Evaluation dataset

Processing

  • Create a data directory, extract all above datasets or additional materials in it

Now your data folder structure should like this:

data/

    CMU/
        hand143_panopticdb/
            datasets/
            ...
        hand_labels/
            datasets/
            ...

    RHD/
        RHD_published_v2/
            evaluation/
            training/
            view_sample.py
            ...

    GANeratedHands_Release/
        data/
        ...

    STB/
        images/
            B1Counting/
                SK_color_0.png
                SK_depth_0.png
                SK_depth_seg_0.png  <-- merged from STB_supp
                ...
            ...
        labels/
            B1Counting_BB.mat
            ...

    dexter+object/
        calibration/
        bbox_dexter+object.csv
        DO_pred_2d.npy
        data/
            Grasp1/
                annotations/
                    Grasp13D.txt
                    my_Grasp13D.txt
                    ...
                ...
            Grasp2/
                annotations/
                    Grasp23D.txt
                    my_Grasp23D.txt
                    ...
                ...
            Occlusion/
                annotations/
                    Occlusion3D.txt
                    my_Occlusion3D.txt
                    ...
                ...
            Pinch/
                annotations/
                    Pinch3D.txt
                    my_Pinch3D.txt
                    ...
                ...
            Rigid/
                annotations/
                    Rigid3D.txt
                    my_Rigid3D.txt
                    ...
                ...
            Rotate/
                                annotations/
                    Rotate3D.txt
                    my_Rotate3D.txt
                    ...
                ...
        

    EgoDexter/
        preview/
        data/
            Desk/
                annotation.txt_3D.txt
                my_annotation.txt_3D.txt
                ...
            Fruits/
                annotation.txt_3D.txt
                my_annotation.txt_3D.txt
                ...
            Kitchen/
                annotation.txt_3D.txt
                my_annotation.txt_3D.txt
                ...
            Rotunda/
                annotation.txt_3D.txt
                my_annotation.txt_3D.txt
                ...
        

Note

  • All code and data from these download falls under their own licenses.
  • DO represents "dexter+object" dataset; EO represents "EgoDexter" dataset
  • DO_supp and EO_supp are modified from original ones.
  • DO_pred_2d.npy are 2D predictions from 2D part of DetNet.
  • some labels of DO and EO is obviously wrong (u could find some examples with original labels from dexter_object.py or egodexter.py), when projected into image plane, thus should be omitted. Here come my_{}3D.txt and my_annotation.txt_3D.txt.

Download my Results

realtime demo

python demo.py

DetNet Training and Evaluation

Run the training code

python train_detnet.py --data_root data/

Run the evaluation code

python train_detnet.py --data_root data/  --datasets_test testset_name_to_test   --evaluate  --evaluate_id checkpoints_id_to_load 

or use my results

python train_detnet.py --checkpoint my_results/checkpoints  --datasets_test "rhd" --evaluate  --evaluate_id 106

python train_detnet.py --checkpoint my_results/checkpoints  --datasets_test "stb" --evaluate  --evaluate_id 71

python train_detnet.py --checkpoint my_results/checkpoints  --datasets_test "do" --evaluate  --evaluate_id 68

python train_detnet.py --checkpoint my_results/checkpoints  --datasets_test "eo" --evaluate  --evaluate_id 101

Shape Estimation

Run the shape optimization code. This can be very time consuming when the weight parameter is quite small.

python optimize_shape.py --weight 1e-5

or use my results

python optimize_shape.py --path my_results/out_testset/

Pose Estimation

Run the following code which uses a analytical inverse kinematics method.

python aik_pose.py

or use my results

python aik_pose.py --path my_results/out_testset/

Detnet training and evaluation curve

Run the following code to see my results

python plot.py --path my_results/out_loss_auc

(AUC means 3D PCK, and ACC_HM means 2D PCK) teaser

3D PCK AUC Diffenence

* means this project

Dataset DetNet(paper) DetNet(*) DetNet+IKNet(paper) DetNet+LM+AIK(*) DetNet+PSO+AIK(*)
RHD - 0.9339 0.856 0.9301 0.9310
STB 0.891 0.8744 0.898 0.8647 0.8671
DO 0.923 0.9378 0.948 0.9392 0.9342
EO 0.804 0.9270 0.811 0.9288 0.9277

Note

  • Adjusting training parameters carefully, longer training time, more complicated network or Biomechanical Constraint Losses could further boost accuracy.
  • As there is no official open source of original paper, above comparison is a little rough.

Citation

This is the unofficial pytorch reimplementation of the paper "Monocular Real-time Hand Shape and Motion Capture using Multi-modal Data" (CVPR 2020).

If you find the project helpful, please star this project and cite them:

@inproceedings{zhou2020monocular,
  title={Monocular Real-time Hand Shape and Motion Capture using Multi-modal Data},
  author={Zhou, Yuxiao and Habermann, Marc and Xu, Weipeng and Habibie, Ikhsanul and Theobalt, Christian and Xu, Feng},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={0--0},
  year={2020}
}

Acknowledgement

  • Code of Mano Pytorch Layer was adapted from manopth.

  • Code for evaluating the hand PCK and AUC in utils/eval/zimeval.py was adapted from hand3d.

  • Part code of data augmentation, dataset parsing and utils were adapted from bihand and 3D-Hand-Pose-Estimation.

  • Code of network model was adapted from Minimal-Hand.

  • @Mrsirovo for the starter code of the utils/LM.py, @maitetsu update it later.

  • @maitetsu for the starter code of the utils/AIK.py

Owner
Hao Meng
Master student at Beihang University , mainly interested in hand pose estimation. (LOOKING FOR RESEARCH INTERNSHIP NOW.)
Hao Meng
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

MSG-Transformer Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens, by Jiemin

Hust Visual Learning Team 68 Nov 16, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023