Code for Learning to Segment The Tail (LST)

Related tags

Deep LearningLST_LVIS
Overview

Learning to Segment the Tail

[arXiv]


In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from the project maskrcnn_benchmark, which is an excellent codebase! If you get any problem that causes you unable to run the project, you can check the issues under maskrcnn_benchmark first.

Installation

Please following INSTALL.md for maskrcnn_benchmark. For experiments on LVIS_v0.5 dataset, you need to use lvis-api.

LVIS Dataset

After downloading LVIS_v0.5 dataset (the images are the same as COCO 2017 version), we recommend to symlink the path to the lvis dataset to datasets/ as follows

# symlink the lvis dataset
cd ~/github/LST_LVIS
mkdir -p datasets/lvis
ln -s /path_to_lvis_dataset/annotations datasets/lvis/annotations
ln -s /path_to_coco_dataset/images datasets/lvis/images

A detailed visualization demo for LVIS is LVIS_visualization. You'll find it is the most useful thing you can get from this repo :P

Dataset Pre-processing and Indices Generation

dataset_preprocess.ipynb: LVIS dataset is split into the base set and sets for the incremental phases.

balanced_replay.ipynb: We generate indices to load the LVIS dataset offline using the balanced replay scheme discussed in our paper.

Training

Our pre-trained model is model. You can trim the model and load it for LVIS training as in trim_model. Modifications to the backbone follows MaskX R-CNN. You can also check our paper for detail.

training for base

The base training is the same as conventional training. For example, to train a model with 8 GPUs you can run:

python -m torch.distributed.launch --nproc_per_node=8 /path_to_maskrcnn_benchmark/tools/train_net.py --use-tensorboard --config-file "/path/to/config/train_file.yaml"  MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN 1000

The details about MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN is discussed in maskrcnn-benchmark.

Edit this line to initialze the dataloader with corresponding sorted category ids.

training for incremental steps

The training for each incremental phase is armed with our data balanced replay. It needs to be initialized properly here, providing the corresponding external img-id/cls-id pairs for data-loading.

get distillation

We use ground truth bounding boxes to get prediction logits using the model trained from last step. Change this to decide which classes to be distilled.

Here is an example for running:

python ./tools/train_net.py --use-tensorboard --config-file "/path/to/config/get_distillation_file.yaml" MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN 1000

The output distillation logits are saved in json format.

Evaluation

The evaluation for LVIS is a little bit different from COCO since it is not exhausted annotated, which is discussed in detail in Gupta et al.'s work.

We also report the AP for each phase and each class, which can provide better analysis.

You can run:

export NGPUS=8
python -m torch.distributed.launch --nproc_per_node=$NGPUS /path_to_maskrcnn_benchmark/tools/test_net.py --config-file "/path/to/config/train_file.yaml" 

We also provide periodically testing to check the result better, as discussed in this issue.

Thanks for all the previous work and the sharing of their codes. Sorry for my ugly code and I appreciate your advice.

Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
📖 Deep Attentional Guided Image Filtering

📖 Deep Attentional Guided Image Filtering [Paper] Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao ,Xiangyang Ji Harbin Institute of Technology,

9 Dec 23, 2022
[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
Source code for "Taming Visually Guided Sound Generation" (Oral at the BMVC 2021)

Taming Visually Guided Sound Generation • [Project Page] • [ArXiv] • [Poster] • • Listen for the samples on our project page. Overview We propose to t

Vladimir Iashin 226 Jan 03, 2023
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022