Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Overview

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Overview

This project is a Torch implementation for our CVPR 2016 paper, which performs jointly unsupervised learning of deep CNN and image clusters. The intuition behind this is that better image representation will facilitate clustering, while better clustering results will help representation learning. Given a unlabeled dataset, it will iteratively learn CNN parameters unsupervisedly and cluster images.

Disclaimer

This is a torch version reimplementation to the code used in our CVPR paper. There is a slight difference between the code used to report the results in our paper. The Caffe version code can be found here.

License

This code is released under the MIT License (refer to the LICENSE file for details).

Citation

If you find our code is useful in your researches, please consider citing:

@inproceedings{yangCVPR2016joint,
    Author = {Yang, Jianwei and Parikh, Devi and Batra, Dhruv},
    Title = {Joint Unsupervised Learning of Deep Representations and Image Clusters},
    Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    Year = {2016}
}

Dependencies

  1. Torch. Install Torch by:

    $ curl -s https://raw.githubusercontent.com/torch/ezinstall/master/install-deps | bash
    $ git clone https://github.com/torch/distro.git ~/torch --recursive
    $ cd ~/torch; 
    $ ./install.sh      # and enter "yes" at the end to modify your bashrc
    $ source ~/.bashrc

    After installing torch, you may also need install some packages using LuaRocks:

    $ luarocks install nn
    $ luarocks install image 

    It is preferred to run the code on GPU. Thus you need to install cunn:

    $ luarocks install cunn
  2. lua-knn. It is used to compute the distance between neighbor samples. Go into the folder, and then compile it with:

    $ luarocks make

Typically, you can run our code after installing the above two packages. Please let me know if error occurs.

Installation Using Nvidia-Docker

  1. Run docker build -t .
  2. Run nvidia-docker run -it /bin/bash

Train model

  1. It is very simple to run the code for training model. For example, if you want to train on USPS dataset, you can run:

    $ th train.lua -dataset USPS -eta 0.9

    Note that it runs on fast mode by default. You can change it to regular mode by setting "-use_fast 0". In the above command, eta is the unfolding rate. For face dataset, we recommand 0.2, while for other datasets, it is set to 0.9 to save training time. During training, you will see the normalize mutual information (NMI) for the clustering results.

  2. You can train multiple models in parallel by:

    $ th train.lua -dataset USPS -eta 0.9 -num_nets 5

    By this way, you weill get 5 different models, and thus 5 possible different results. Statistics such as mean and stddev can be computed on these results.

  3. You can also get the clustering performance when using raw image data and random CNN by

    $ th train.lua -dataset USPS -eta 0.9 -updateCNN 0
  4. You can also change other hyper parameters for model training, such as K_s, K_c, number of epochs in each partial unrolled period, etc.

Datasets

We upload six small datasets: COIL-20, USPS, MNIST-test, CMU-PIE, FRGC, UMist. The other large datasets, COIL-100, MNIST-full and YTF can be found in my google drive here.

Train on your own datasets

Alternatively, you can train the model on your own dataset. As preparations, you need:

  1. Create a hdf5 file with size of NxCxHxW, where N is the total number of images, C is the number of channels, H is the height of image, and W the width of image. Then move it to datasets/dataset_name/data4torch.h5

  2. Create a lua file to define the network architecture for your dataset. Put it in models_def/dataset_name.lua.

  3. Afterwards, you can run train.lua by specifying the dataset name as your own dataset. That's it!

Compared Approaches

We upload the code for the compared approaches in matlab folder. Please refer to the original paper for details and cite them properly. In this foler, we also attach the evaluation code for two metric: normalized mutual information (NMI) and clustering accuracy (AC).

Q&A

You are welcome to send message to (jw2yang at vt.edu) if you have any issue on this code.

Owner
Jianwei Yang
Senior Researcher @ Microsoft
Jianwei Yang
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
【ACMMM 2021】DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning (ACMMM 2021) Overview We release the code of the DSANet (Dynamic S

Wenhao Wu 46 Dec 27, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 08, 2022
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022