A python package to perform same transformation to coco-annotation as performed on the image.

Overview

coco-transform-util

A python package to perform same transformation to coco-annotation as performed on the image.

Installation

Way 1

$ git clone https://git.cglcloud.com/ILC-APAC/coco-transform-util.git
$ cd coco-transform-util
$ python3 setup.py install

Way 2

$ pip3 install git+https://git.cglcloud.com/ILC-APAC/coco-transform-util.git
<<< Username: <[email protected]>
<<< Password: <personal access token or SSH key>

Personal Access token looks like this 83b318cg875a5g302e5fdaag74afc8ceb6a91a2e.

Reference: How to generate Personal Access token

Check installation

import ctu
print(ctu.__version__)

Benefits and Use Cases

  1. Faster Model Training: Decrease the size of images and accordingly its annotation will be changed using this.
  2. Flexibility: Rescaling of images and annotations to meet the need of Model/Framework.
  3. Cost Saving: Lesser Computation requirement as images can be downscaled.
  4. Interpretability: Annotation Visualization is also a part of this package.
  5. Data Augmentation: <more practical in future>
  6. Ability to handle other cases: Added Functionality such as cropping or padding of the annotation can help in multiple other cases such as:
    • cropping out each object image & annotation from an original image
    • cropping unnecessary area to zoom in on some particular area.
    • converting images to 1:1 aspect ratio by using padding and/or cropping.

How to use it?

Core

There are four core modules inside that helps in performing operations on COCO Annotation. These can imported as shown below:

from ctu import WholeCoco2SingleImgCoco, Coco2CocoRel, CocoRel2CocoSpecificSize, AggreagateCoco  

It's recommended that you have look at samples/example_core_modules.py to understand and explore how to use these.

Wrapper

Making use of wrappers can also come in handly to perform multiple operations in a much simpler and interpretable manner using the functions provided below:

from ctu import (
    sample_modif_step_di, get_modif_imag, get_modif_coco_annotation, 
    accept_and_process_modif_di, ImgTransform, Visualize
)

It's recommended that you have look at samples/example_highlevel_function.py to understand and explore how to use these.

Some sample data has also been provided with this package at example_data/* to explore these functionalities.

Demo / Sample

A sample HTML created from Jupyter-Notebook, contating some sample results has been added to the path samples/Demo-SampleOutput.html.

Version History

  • v0.1: Core Modules: WholeCoco2SingleImgCoco, Coco2CocoRel, CocoRel2CocoSpecificSize. External Dependency on AMLEET package.
  • v0.2: Removed the dependency on AMLEET package. Develop Core Module: AggreagateCoco. Addition of field "area" under "annotations" in coco.
  • v0.3: Completed: Remove the out of frame coordinates in annotation. Update & add fields in "annotation" > "images". Ability to create transparent and general mask create_mask. In Development: Ability to export transformed image, mask and annotation per image wise and as a whole too.

Future

  • Update the image fields in "images" key. (done)
  • Crop out the annotation which are out-of-frame based on recent image shape. (done)
  • Annotation Visualization + Mask creation can become a core feature to this library. (done)
  • Rotate 90 degree left/right.
  • Flip horizontally or vertically.
  • COCO to other annotation format can also be a feature to this package.
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)

ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so

PGM-Lab 46 Nov 01, 2022
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation".

PixelTransformer Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation". Project Page Installation Please insta

Shubham Tulsiani 24 Dec 17, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023