Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Overview

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets

This is the official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR 2021). For more details, please refer to:


Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets

Yuan-Hong Liao, Amlan Kar, Sanja Fidler

University of Toronto

[Paper] [Video] [Project]

CVPR2021 Oral

Data is the engine of modern computer vision, which necessitates collecting large-scale datasets. This is expensive, and guaranteeing the quality of the labels is a major challenge. In this paper, we investigate efficient annotation strategies for collecting multi-class classification labels fora large collection of images. While methods that exploit learnt models for labeling exist, a surprisingly prevalent approach is to query humans for a fixed number of labels per datum and aggregate them, which is expensive. Building on prior work on online joint probabilistic modeling of human annotations and machine generated beliefs, we propose modifications and best practices aimed at minimizing human labeling effort. Specifically, we make use ofadvances in self-supervised learning, view annotation as a semi-supervised learning problem, identify and mitigate pitfalls and ablate several key design choices to propose effective guidelines for labeling. Our analysis is done in a more realistic simulation that involves querying human labelers, which uncovers issues with evaluation using existing worker simulation methods. Simulated experiments on a 125k image subset of the ImageNet dataset with 100 classes showthat it can be annotated to 80% top-1 accuracy with 0.35 annotations per image on average, a 2.7x and 6.7x improvement over prior work and manual annotation, respectively.


Code usage

  • Downdload the extracted BYOL features and change root directory accordingly
wget -P data/features/ http://www.cs.toronto.edu/~andrew/research/cvpr2021-good_practices/data/byol_r50-e3b0c442.pth_feat1.npy 

Replace REPO_DIR (here) with the absolute path to the repository.

  • Run online labeling with simulated workers
    • <EXPERIMENT> can be imagenet_split_0~5, imagenet_animal, imagenet_100_classes
    • <METHOD> can be ds_model, lean, improved_lean, efficient_annotation
    • <SIMULATION> can be amt_structured_noise, amt_uniform_noise
python main.py experiment=<EXPERIMENT> learner_method=<METHOD> simulation <SIMULATION>

To change other configurations, go check the config.yaml here.

Code Structure

There are several components in our system: Sampler, AnnotationHolder, Learner, Optimizer and Aggregator.

  • Sampler: We implement RandomSampler and GreedyTaskAssignmentSampler. For GreedyTaskAssignmentSampler, you need to specify an additional flag max_annotation_per_worker

For example,

python main.py experiment=imagenet_animal learner_method=efficient_annotation simulation=amt_structured_noise sampler.algo=greedy_task_assignment sampler.max_annotation_per_worker=2000
  • AnnotationHolder: It holds all information of each example including worker annotation, ground truth and current risk estimation. For simulated worker, you can call annotation_holder.collect_annotation to query annotations. You can also sample the annotation outside and add them by calling annotation_holder.add_annotation

  • Learner: We implement DummyLearner and LinearNNLearner. You can use your favorite architecture by overwriting NNLearner.init_learner

  • Optimizer: We implement EMOptimizer. By calling optimizer.step, the optimizer perform EM for a fixed number of times unless it's converged. If DummyLearner is not used, the optimizer is expected to call optimizer.fit_machine_learner to train the machine learner and perform prediction over all data examples.

  • Aggregator: We implement MjAggregator and BayesAggregator. MjAggregator performs majority vote to infer the final label. BayesAggregator treat the ground truth and worker skill as hidden variables and infer it based on the observation (worker annotation).

Citation

If you use this code, please cite:

@misc{liao2021good,
      title={Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets}, 
      author={Yuan-Hong Liao and Amlan Kar and Sanja Fidler},
      year={2021},
      eprint={2104.12690},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Sanja Fidler's Lab
Sanja Fidler's lab at the University of Toronto
Sanja Fidler's Lab
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
PyElastica is the Python implementation of Elastica, an open-source software for the simulation of assemblies of slender, one-dimensional structures using Cosserat Rod theory.

PyElastica PyElastica is the python implementation of Elastica: an open-source project for simulating assemblies of slender, one-dimensional structure

Gazzola Lab 105 Jan 09, 2023
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

tzt 45 Nov 17, 2022