Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Overview

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets

This is the official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR 2021). For more details, please refer to:


Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets

Yuan-Hong Liao, Amlan Kar, Sanja Fidler

University of Toronto

[Paper] [Video] [Project]

CVPR2021 Oral

Data is the engine of modern computer vision, which necessitates collecting large-scale datasets. This is expensive, and guaranteeing the quality of the labels is a major challenge. In this paper, we investigate efficient annotation strategies for collecting multi-class classification labels fora large collection of images. While methods that exploit learnt models for labeling exist, a surprisingly prevalent approach is to query humans for a fixed number of labels per datum and aggregate them, which is expensive. Building on prior work on online joint probabilistic modeling of human annotations and machine generated beliefs, we propose modifications and best practices aimed at minimizing human labeling effort. Specifically, we make use ofadvances in self-supervised learning, view annotation as a semi-supervised learning problem, identify and mitigate pitfalls and ablate several key design choices to propose effective guidelines for labeling. Our analysis is done in a more realistic simulation that involves querying human labelers, which uncovers issues with evaluation using existing worker simulation methods. Simulated experiments on a 125k image subset of the ImageNet dataset with 100 classes showthat it can be annotated to 80% top-1 accuracy with 0.35 annotations per image on average, a 2.7x and 6.7x improvement over prior work and manual annotation, respectively.


Code usage

  • Downdload the extracted BYOL features and change root directory accordingly
wget -P data/features/ http://www.cs.toronto.edu/~andrew/research/cvpr2021-good_practices/data/byol_r50-e3b0c442.pth_feat1.npy 

Replace REPO_DIR (here) with the absolute path to the repository.

  • Run online labeling with simulated workers
    • <EXPERIMENT> can be imagenet_split_0~5, imagenet_animal, imagenet_100_classes
    • <METHOD> can be ds_model, lean, improved_lean, efficient_annotation
    • <SIMULATION> can be amt_structured_noise, amt_uniform_noise
python main.py experiment=<EXPERIMENT> learner_method=<METHOD> simulation <SIMULATION>

To change other configurations, go check the config.yaml here.

Code Structure

There are several components in our system: Sampler, AnnotationHolder, Learner, Optimizer and Aggregator.

  • Sampler: We implement RandomSampler and GreedyTaskAssignmentSampler. For GreedyTaskAssignmentSampler, you need to specify an additional flag max_annotation_per_worker

For example,

python main.py experiment=imagenet_animal learner_method=efficient_annotation simulation=amt_structured_noise sampler.algo=greedy_task_assignment sampler.max_annotation_per_worker=2000
  • AnnotationHolder: It holds all information of each example including worker annotation, ground truth and current risk estimation. For simulated worker, you can call annotation_holder.collect_annotation to query annotations. You can also sample the annotation outside and add them by calling annotation_holder.add_annotation

  • Learner: We implement DummyLearner and LinearNNLearner. You can use your favorite architecture by overwriting NNLearner.init_learner

  • Optimizer: We implement EMOptimizer. By calling optimizer.step, the optimizer perform EM for a fixed number of times unless it's converged. If DummyLearner is not used, the optimizer is expected to call optimizer.fit_machine_learner to train the machine learner and perform prediction over all data examples.

  • Aggregator: We implement MjAggregator and BayesAggregator. MjAggregator performs majority vote to infer the final label. BayesAggregator treat the ground truth and worker skill as hidden variables and infer it based on the observation (worker annotation).

Citation

If you use this code, please cite:

@misc{liao2021good,
      title={Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets}, 
      author={Yuan-Hong Liao and Amlan Kar and Sanja Fidler},
      year={2021},
      eprint={2104.12690},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Sanja Fidler's Lab
Sanja Fidler's lab at the University of Toronto
Sanja Fidler's Lab
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages

NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages. This project was supported by lacuna-fund initiatives. Jump straight to one of the sections below, or jus

Hausa Natural Language Processing 14 Dec 20, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
Prevent `CUDA error: out of memory` in just 1 line of code.

🐨 Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. 🚀 Features 🙅 Prevents CUDA error

RenChu Wang 1.7k Jan 02, 2023
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022