Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

Overview

I2V-GAN

This repository is the official Pytorch implementation for ACMMM2021 paper
"I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

Traffic I2V Example:

compair_gif01

Monitoring I2V Example:

compair_gif02

Flower Translation Example:

compair_gif03

Introduction

Abstract

Human vision is often adversely affected by complex environmental factors, especially in night vision scenarios. Thus, infrared cameras are often leveraged to help enhance the visual effects via detecting infrared radiation in the surrounding environment, but the infrared videos are undesirable due to the lack of detailed semantic information. In such a case, an effective video-to-video translation method from the infrared domain to the visible counterpart is strongly needed by overcoming the intrinsic huge gap between infrared and visible fields.
Our work propose an infrared-to-visible (I2V) video translation method I2V-GAN to generate fine-grained and spatial-temporal consistent visible light video by given an unpaired infrared video.
The backbone network follows Cycle-GAN and Recycle-GAN.
compaire

Technically, our model capitalizes on three types of constraints: adversarial constraint to generate synthetic frame that is similar to the real one, cyclic consistency with the introduced perceptual loss for effective content conversion as well as style preservation, and similarity constraint across and within domains to enhance the content and motion consistency in both spatial and temporal spaces at a fine-grained level.

network-all

IRVI Dataset

Click here to download IRVI dataset from Baidu Netdisk. Access code: IRVI.

data_samples

Data Structure

SUBSET TRAIN TEST TOTAL FRAME
Traffic 17000 1000 18000
Mornitoring sub-1 1384 347 1731 6352
sub-2 1040 260 1300
sub-3 1232 308 1540
sub-4 672 169 841
sub-5 752 188 940

Installation

The code is implemented with Python(3.6) and Pytorch(1.9.0) for CUDA Version 11.2

Install dependencies:
pip install -r requirements.txt

Usage

Train

python train.py --dataroot /path/to/dataset \
--display_env visdom_env_name --name exp_name \
--model i2vgan --which_model_netG resnet_6blocks \
--no_dropout --pool_size 0 \
--which_model_netP unet_128 --npf 8 --dataset_mode unaligned_triplet

Test

python test.py --dataroot /path/to/dataset \
--which_epoch latest --name exp_name --model cycle_gan \
--which_model_netG resnet_6blocks --which_model_netP unet_128 \
--dataset_mode unaligned --no_dropout --loadSize 256 --resize_or_crop crop

Citation

If you find our work useful in your research or publication, please cite our work:

@inproceedings{I2V-GAN2021,
  title     = {I2V-GAN: Unpaired Infrared-to-Visible Video Translation},
  author    = {Shuang Li and Bingfeng Han and Zhenjie Yu and Chi Harold Liu and Kai Chen and Shuigen Wang},
  booktitle = {ACMMM},
  year      = {2021}
}

Acknowledgements

This code borrows heavily from the PyTorch implementation of Cycle-GAN and Pix2Pix and RecycleGAN.
A huge thanks to them!

@inproceedings{CycleGAN2017,
  title     = {Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networkss},
  author    = {Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A},
  booktitle = {ICCV},
  year      = {2017}
}

@inproceedings{Recycle-GAN2018,
  title     = {Recycle-GAN: Unsupervised Video Retargeting},
  author    = {Aayush Bansal and Shugao Ma and Deva Ramanan and Yaser Sheikh},
  booktitle = {ECCV},
  year      = {2018}
}
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

TalkingHead-1KH Dataset TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid: On

173 Dec 29, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022