Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

Overview

I2V-GAN

This repository is the official Pytorch implementation for ACMMM2021 paper
"I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

Traffic I2V Example:

compair_gif01

Monitoring I2V Example:

compair_gif02

Flower Translation Example:

compair_gif03

Introduction

Abstract

Human vision is often adversely affected by complex environmental factors, especially in night vision scenarios. Thus, infrared cameras are often leveraged to help enhance the visual effects via detecting infrared radiation in the surrounding environment, but the infrared videos are undesirable due to the lack of detailed semantic information. In such a case, an effective video-to-video translation method from the infrared domain to the visible counterpart is strongly needed by overcoming the intrinsic huge gap between infrared and visible fields.
Our work propose an infrared-to-visible (I2V) video translation method I2V-GAN to generate fine-grained and spatial-temporal consistent visible light video by given an unpaired infrared video.
The backbone network follows Cycle-GAN and Recycle-GAN.
compaire

Technically, our model capitalizes on three types of constraints: adversarial constraint to generate synthetic frame that is similar to the real one, cyclic consistency with the introduced perceptual loss for effective content conversion as well as style preservation, and similarity constraint across and within domains to enhance the content and motion consistency in both spatial and temporal spaces at a fine-grained level.

network-all

IRVI Dataset

Click here to download IRVI dataset from Baidu Netdisk. Access code: IRVI.

data_samples

Data Structure

SUBSET TRAIN TEST TOTAL FRAME
Traffic 17000 1000 18000
Mornitoring sub-1 1384 347 1731 6352
sub-2 1040 260 1300
sub-3 1232 308 1540
sub-4 672 169 841
sub-5 752 188 940

Installation

The code is implemented with Python(3.6) and Pytorch(1.9.0) for CUDA Version 11.2

Install dependencies:
pip install -r requirements.txt

Usage

Train

python train.py --dataroot /path/to/dataset \
--display_env visdom_env_name --name exp_name \
--model i2vgan --which_model_netG resnet_6blocks \
--no_dropout --pool_size 0 \
--which_model_netP unet_128 --npf 8 --dataset_mode unaligned_triplet

Test

python test.py --dataroot /path/to/dataset \
--which_epoch latest --name exp_name --model cycle_gan \
--which_model_netG resnet_6blocks --which_model_netP unet_128 \
--dataset_mode unaligned --no_dropout --loadSize 256 --resize_or_crop crop

Citation

If you find our work useful in your research or publication, please cite our work:

@inproceedings{I2V-GAN2021,
  title     = {I2V-GAN: Unpaired Infrared-to-Visible Video Translation},
  author    = {Shuang Li and Bingfeng Han and Zhenjie Yu and Chi Harold Liu and Kai Chen and Shuigen Wang},
  booktitle = {ACMMM},
  year      = {2021}
}

Acknowledgements

This code borrows heavily from the PyTorch implementation of Cycle-GAN and Pix2Pix and RecycleGAN.
A huge thanks to them!

@inproceedings{CycleGAN2017,
  title     = {Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networkss},
  author    = {Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A},
  booktitle = {ICCV},
  year      = {2017}
}

@inproceedings{Recycle-GAN2018,
  title     = {Recycle-GAN: Unsupervised Video Retargeting},
  author    = {Aayush Bansal and Shugao Ma and Deva Ramanan and Yaser Sheikh},
  booktitle = {ECCV},
  year      = {2018}
}
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022