Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

Related tags

Deep LearningLPTN
Overview

LPTN

Paper | Supplementary Material | Poster

High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network
Jie Liang*, Hui Zeng*, and Lei Zhang.
In CVPR 2021.

Abstract

Existing image-to-image translation (I2IT) methods are either constrained to low-resolution images or long inference time due to their heavy computational burden on the convolution of high-resolution feature maps. In this paper, we focus on speeding-up the high-resolution photorealistic I2IT tasks based on closed-form Laplacian pyramid decomposition and reconstruction. Specifically, we reveal that the attribute transformations, such as illumination and color manipulation, relate more to the low-frequency component, while the content details can be adaptively refined on high-frequency components. We consequently propose a Laplacian Pyramid Translation Network (LPTN) to simultaneously perform these two tasks, where we design a lightweight network for translating the low-frequency component with reduced resolution and a progressive masking strategy to efficiently refine the high-frequency ones. Our model avoids most of the heavy computation consumed by processing high-resolution feature maps and faithfully preserves the image details. Extensive experimental results on various tasks demonstrate that the proposed method can translate 4K images in real-time using one normal GPU while achieving comparable transformation performance against existing methods.

Overall pipeline of the LPTN:

pipeline

For more details, please refer to our paper.

Getting started

  • Clone this repo.
git clone https://github.com/csjliang/LPTN
cd LPTN
  • Install dependencies. (Python 3 + NVIDIA GPU + CUDA. Recommend to use Anaconda)
pip install -r requirement.txt
  • Download dataset (FiveK in 480p) and create lmdb (to accelerate training).
PYTHONPATH="./:${PYTHONPATH}" python scripts/data_preparation/download_datasets.py
PYTHONPATH="./:${PYTHONPATH}" python scripts/data_preparation/create_lmdb.py

Training

First, check and adapt the yml file options/train/LPTN/train_FiveK.yml, then

  • Single GPU:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python codes/train.py -opt options/train/LPTN/train_FiveK.yml
  • Distributed Training:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 codes/train.py -opt options/train/LPTN/train_FiveK.yml --launcher pytorch

Training files (logs, models, training states and visualizations) will be saved in the directory ./experiments/{name}

Evaluation

First, check and adapt the yml file options/test/LPTN/test_FiveK.yml and options/test/LPTN/test_speed_FiveK.yml, then

  • Calculate metrics and save visual results:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python codes/test.py -opt options/test/LPTN/test_FiveK.yml
  • Test inference speed:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python codes/test_speed.py -opt options/test/LPTN/test_speed_FiveK.yml

Evaluating files (logs and visualizations) will be saved in the directory ./results/{name}

Use Pretrained Models

  • Download the pretrained model from GoogleDrive and move it to the directory experiments/pretrained_models:

  • Specify the path: pretrain_network_g in test_FiveK.yml and run evaluation.

Notes

  • We have optimized the training process and improved the performance (get 22.9db on FiveK at 480p)

  • We will release the datasets of day2night and sum2win later.

Citation

If you use this dataset or code for your research, please cite our paper.

@inproceedings{jie2021LPTN,
  title={High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network},
  author={Liang, Jie and Zeng, Hui and Zhang, Lei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Acknowledgement

We borrowed the training and validating framework from the excellent BasicSR project.

Contact

Should you have any questions, please contact me via [email protected].

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

Hong Wang 4 Dec 27, 2022
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022