Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Overview

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementation)

Teaser

Paper

Pan Zhang, Bo Zhang, Ting Zhang, Dong Chen, Yong Wang, and Fang Wen.

Compare

Abstract

Self-training is a competitive approach in domain adaptive segmentation, which trains the network with the pseudo labels on the target domain. However inevitably, the pseudo labels are noisy and the target features are dispersed due to the discrepancy between source and target domains. In this paper, we rely on representative prototypes, the feature centroids of classes, to address the two issues for unsupervised domain adaptation. In particular, we take one step further and exploit the feature distances from prototypes that provide richer information than mere prototypes. Specifically, we use it to estimate the likelihood of pseudo labels to facilitate online correction in the course of training. Meanwhile, we align the prototypical assignments based on relative feature distances for two different views of the same target, producing a more compact target feature space. Moreover, we find that distilling the already learned knowledge to a self-supervised pretrained model further boosts the performance. Our method shows tremendous performance advantage over state-of-the-art methods.

Installation

Install dependencies:

pip install -r requirements.txt

Data Preparation

Download Cityscapes, GTA5 and SYNTHIA-RAND-CITYSCAPES.

Inference Using Pretrained Model

1) GTA5 -> Cityscapes

Download the pretrained model (57.5 mIoU) and save it in ./pretrained/gta2citylabv2_stage3. Then run the command

python test.py --bn_clr --student_init simclr --resume ./pretrained/gta2citylabv2_stage3/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl
2) SYNTHIA -> Cityscapes

Download the pretrained model (55.5 mIoU, 62.0 mIoU for 16, 13 categories respectively) and save it in ./pretrained/syn2citylabv2_stage3. Then run the command

python test.py --bn_clr --student_init simclr --n_class 16 --resume ./pretrained/syn2citylabv2_stage3/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl

Training

To reproduce the performance, you need 4 GPUs with no less than 16G memory.

1) GTA5 -> Cityscapes
  • Stage1. Download warm-up model (43.3 mIoU), and save it in ./pretrained/gta2citylabv2_warmup/.

    • Generate soft pseudo label.
    python generate_pseudo_label.py --name gta2citylabv2_warmup_soft --soft --resume_path ./pretrained/gta2citylabv2_warmup/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast 
    • Calculate initial prototypes.
    python calc_prototype.py --resume_path ./pretrained/gta2citylabv2_warmup/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl
    • Train stage1.
    python train.py --name gta2citylabv2_stage1Denoise --used_save_pseudo --ema --proto_rectify --moving_prototype --path_soft Pseudo/gta2citylabv2_warmup_soft --resume_path ./pretrained/gta2citylabv2_warmup/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --proto_consistW 10 --rce --regular_w 0.1
  • Stage2. This stage needs well-trained model from stage1 as teacher model. You can get it by above command or download the pretrained model stage1 model(53.7 mIoU) and save it in ./pretrained/gta2citylabv2_stage1Denoise/ (path of resume_path). Besides, download the pretrained model simclr model and save it to ./pretrained/simclr/.

    • Generate pseudo label.
    python generate_pseudo_label.py --name gta2citylabv2_stage1Denoise --flip --resume_path ./logs/gta2citylabv2_stage1Denoise/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast
    • Train stage2.
    python train.py --name gta2citylabv2_stage2 --stage stage2 --used_save_pseudo --path_LP Pseudo/gta2citylabv2_stage1Denoise --resume_path ./logs/gta2citylabv2_stage1Denoise/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --S_pseudo 1 --threshold 0.95 --distillation 1 --finetune --lr 6e-4 --student_init simclr --bn_clr --no_resume
  • Stage3. This stage needs well-trained model from stage2 as the teacher model. You can get it with the above command or download the pretrained model stage2 model(56.9 mIoU) and save it in ./pretrained/gta2citylabv2_stage2/ (path of resume_path).

    • Generate pseudo label.
    python generate_pseudo_label.py --name gta2citylabv2_stage2 --flip --resume_path ./logs/gta2citylabv2_stage2/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast --bn_clr --student_init simclr
    • Train stage3.
    python train.py --name gta2citylabv2_stage3 --stage stage3 --used_save_pseudo --path_LP Pseudo/gta2citylabv2_stage2 --resume_path ./logs/gta2citylabv2_stage2/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --S_pseudo 1 --threshold 0.95 --distillation 1 --finetune --lr 6e-4 --student_init simclr --bn_clr --ema_bn
2) SYNTHIA -> Cityscapes
  • Stage1. Download warmup model(41.4 mIoU), save it in ./pretrained/syn2citylabv2_warmup/.

    • Generate soft pseudo label.
    python generate_pseudo_label.py --name syn2citylabv2_warmup_soft --soft --n_class 16 --resume_path ./pretrained/syn2citylabv2_warmup/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast 
    • Calculate initial prototypes.
    python calc_prototype.py --resume_path ./pretrained/syn2citylabv2_warmup/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --n_class 16
    • Train stage1.
    python train.py --name syn2citylabv2_stage1Denoise --src_dataset synthia --n_class 16 --src_rootpath src_rootpath --used_save_pseudo --path_soft Pseudo/syn2citylabv2_warmup_soft --ema --proto_rectify --moving_prototype --proto_consistW 10 --resume_path ./pretrained/syn2citylabv2_warmup/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --rce
  • Stage2. This stage needs well-trained model from stage1 as teacher model. You can get it by above command or download released pretrained stage1 model(51.9 mIoU) and save it in ./pretrained/syn2citylabv2_stage1Denoise/ (path of resume_path).

    • Generate pseudo label.
    python generate_pseudo_label.py --name syn2citylabv2_stage1Denoise --flip --resume_path ./logs/syn2citylabv2_stage2/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast --n_class 16
    • Train stage2.
    python train.py --name syn2citylabv2_stage2 --stage stage2 --src_dataset synthia --n_class 16 --src_rootpath src_rootpath --used_save_pseudo --path_LP Pseudo/syn2citylabv2_stage1Denoise --resume_path ./logs/syn2citylabv2_stage2/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --S_pseudo 1 --threshold 0.95 --distillation 1 --finetune --lr 6e-4 --student_init simclr --bn_clr --no_resume
  • Stage3. This stage needs well-trained model from stage2 as teacher model. You can get it by above command or download released pretrained stage2 model(54.6 mIoU) and save it in ./pretrained/stn2citylabv2_stage2/ (path of resume_path).

    • Generate pseudo label.
    python generate_pseudo_label.py --name syn2citylabv2_stage2 --flip --resume_path ./logs/syn2citylabv2_stage2/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast --bn_clr --student_init simclr --n_class 16
    • Train stage3.
    python train.py --name syn2citylabv2_stage3 --stage stage3 --src_dataset synthia --n_class 16 --src_rootpath src_rootpath --used_save_pseudo --path_LP Pseudo/syn2citylabv2_stage2 --resume_path ./logs/syn2citylabv2_stage2/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --S_pseudo 1 --threshold 0.95 --distillation 1 --finetune --lr 6e-4 --student_init simclr --bn_clr --ema_bn

Citation

If you like our work and use the code or models for your research, please cite our work as follows.

@article{zhang2021prototypical,
    title={Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation},
    author={Zhang, Pan and Zhang, Bo and Zhang, Ting and Chen, Dong and Wang, Yong and Wen, Fang},
    journal={arXiv preprint arXiv:2101.10979},
    year={2021}
}

License

The codes and the pretrained model in this repository are under the MIT license as specified by the LICENSE file.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Acknowledgments

This code is heavily borrowed from CAG_UDA.
We also thank Jiayuan Mao for his Synchronized Batch Normalization code.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a

Calvin Remsburg 1 Jan 07, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
End-to-End Referring Video Object Segmentation with Multimodal Transformers

End-to-End Referring Video Object Segmentation with Multimodal Transformers This repo contains the official implementation of the paper: End-to-End Re

608 Dec 30, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Scene-Text-Detection-and-Recognition (Pytorch)

Scene-Text-Detection-and-Recognition (Pytorch) Competition URL: https://tbrain.t

Gi-Luen Huang 9 Jan 02, 2023
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Siavash Eliasi 33 May 31, 2022
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022