A Tensorflow implementation of BicycleGAN.

Overview

BicycleGAN implementation in Tensorflow

As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometimes delay) research in the AI community by promoting open-source projects. To this end, we implement state-of-the-art research papers, and publicly share them with concise reports. Please visit our group github site for other projects.

This project is implemented by Youngwoon Lee and the codes have been reviewed by Yuan-Hong Liao before being published.

Description

This repo is a Tensorflow implementation of BicycleGAN on Pix2Pix datasets: Toward Multimodal Image-to-Image Translation.

This paper presents a framework addressing the image-to-image translation task, where we are interested in converting an image from one domain (e.g., sketch) to another domain (e.g., image). While the previous method (pix2pix) cannot generate diverse outputs, this paper proposes a method that one image (e.g., a sketch of shoes) can be transformed into a set of images (e.g., shoes with different colors/textures).

The proposed method encourages diverse results by generating output images with noise and then reconstructing noise from the output images. The framework consists of two cycles, B -> z' -> B' and noise z -> output B' -> noise z'.

The first step is the conditional Variational Auto Encoder GAN (cVAE-GAN) whose architecture is similar to pix2pix network with noise. In cVAE-GAN, a generator G takes an input image A (sketch) and a noise z and outputs its counterpart in domain B (image) with variations. However, it was reported that the generator G ends up with ignoring the added noise.

The second part, the conditional Latent Regressor GAN (cLR-GAN), enforces the generator to follow the noise z. An encoder E maps visual features (color and texture) of a generated image B' to the latent vector z' which is close to the original noise z. To minimize |z-z'|, images computed with different noises should be different. Therefore, the cLR-GAN can alleviate the issue of mode collapse. Moreover, a KL-divergence loss KL(p(z);N(0;I)) encourages the latent vectors to follow gaussian distribution, so a gaussian noise can be used as a latent vector in testing time.

Finally, the total loss term for Bi-Cycle-GAN is:

Dependencies

Usage

  • Execute the following command to download the specified dataset as well as train a model:
$ python bicycle-gan.py --task edges2shoes --image_size 256
  • To reconstruct 256x256 images, set --image_size to 256; otherwise it will resize to and generate images in 128x128. Once training is ended, testing images will be converted to the target domain and the results will be saved to ./results/edges2shoes_2017-07-07_07-07-07/.

  • Available datasets: edges2shoes, edges2handbags, maps, cityscapes, facades

  • Check the training status on Tensorboard:

$ tensorboard --logdir=./logs

Results

edges2shoes

Linearly sampled noise Randomly sampled noise
edges2shoes1_linear edges2shoes2_random
edges2shoes2_linear edges2shoes2_random

training-edges2shoes.jpg

day2night

In-progress

References

Owner
Cognitive Learning for Vision and Robotics (CLVR) lab @ USC
Learning and Reasoning for Artificial Intelligence, especially focused on perception and action. Led by Professor Joseph J. Lim @ USC
Cognitive Learning for Vision and Robotics (CLVR) lab @ USC
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection Overview Localization of anatomical landmarks is essential for clinica

aoyueyuan 0 Aug 28, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023