Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

Overview

A Differentiable Recurrent Surface for Asynchronous Event-Based Data

Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"
Authors: Marco Cannici, Marco Ciccone, Andrea Romanoni, Matteo Matteucci

Citing:

If you use Matrix-LSTM for research, please cite our accompanying ECCV2020 paper:

@InProceedings{Cannici_2020_ECCV,
    author = {Cannici, Marco and Ciccone, Marco and Romanoni, Andrea and Matteucci, Matteo},
    title = {A Differentiable Recurrent Surface for Asynchronous Event-Based Data},
    booktitle = {The European Conference on Computer Vision (ECCV)},
    month = {August},
    year = {2020}
}

Project Structure

The code is organized in two folders:

  • classification/ containing PyTorch code for N-Cars and N-Caltech101 experiments
  • opticalflow/ containing TensorFlow code for MVSEC experiments (code based on EV-FlowNet repository)

Note: the naming convention used within the code is not exactly the same as the one used in the paper. In particular, the groupByPixel operation is named group_rf_bounded in the code (i.e., group by receptive field, since it also supports receptive fields larger than 1x1), while the groupByTime operation is named intervals_to_batch.

Requirements

We provide a Dockerfile for both codebases in order to replicate the environments we used to run the paper experiments. In order to build and run the containers, the following packages are required:

  • Docker CE - version 18.09.0 (build 4d60db4)
  • NVIDIA Docker - version 2.0

If you have installed the latest version, you may need to modify the .sh files substituting:

  • nvidia-docker run with docker run
  • --runtime=nvidia with --gpus=all

You can verify which command works for you by running:

  • (scripts default) nvidia-docker run -ti --rm --runtime=nvidia -t nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04 nvidia-smi
  • docker run -ti --rm --gpus=all -t nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04 nvidia-smi

You should be able to see the output of nvidia-smi

Run Experiments

Details on how to run experiments are provided in separate README files contained in the classification and optical flow sub-folders:

Note: using Docker is not mandatory, but it will allow you to automate the process of installing dependencies and building CUDA kernels, all within a safe environment that won't modify any of your previous installations. Please, read the Dockerfile and requirements.yml files contained inside the <classification or opticalflow>/docker/ subfolders if you want to perform a standard conda/pip installation (you just need to manually run all RUN commands).

Owner
Marco Cannici
Marco Cannici
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022