1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Overview

SenseEarth2020 - ChangeDetection

1st place in the Satellite Image Change Detection Challenge hosted by SenseTime.

Our Method

Task Description

Given two images of the same scene acquired at different times, we are required to mark the changed and unchanged areas. Moreover, as for the changed areas, we need to annotate their detailed semantic masks.

The change detection task in this competition can be decomposed into two sub-tasks:

  • binary segmentation of changed and unchanged areas.
  • semantic segmentation of changed areas.

Model

image

Pseudo Labeling

The core practice is using self-distillation strategy to assign pseudo labels to unchanged areas.

Specifically, in our experiments, predictions of five HRNet-based segmentation models are ensembled, serving as pseudo labels of unchanged areas.

The overall training process can be summarized as:

  • Training multiple large segmentation models.
  • Ensembling their predictions on unchanged areas.
  • Training a smaller model with both labeled and pseudo labeled areas.

For more details, please refer to the technical report and presentation.

Getting Started

Dataset

Description | Download [password: f3qq]

Pretrained Model

HRNet-W18 | HRNet-W40 | HRNet-W44 | HRNet-W48 | HRNet-W64

Final Trained Model

PSPNet-HRNet-W18 | PSPNet-HRNet-W40

File Organization

# store the whole dataset and pretrained backbones
mkdir -p data/dataset ; mkdir -p data/pretrained_models ;

# store the trained models
mkdir -p outdir/models ; 

# store the pseudo masks
mkdir -p outdir/masks/train/im1 ; mkdir -p outdir/masks/train/im2 ;

# store predictions of validation set and testing set
mkdir -p outdir/masks/val/im1 ; mkdir -p outdir/masks/val/im2 ;
mkdir -p outdir/masks/test/im1 ; mkdir -p outdir/masks/test/im2 ;

├── data
    ├── dataset                    # download from the link above
    │   ├── train                  # training set
    |   |   ├── im1
    |   |   └── ...
    │   └── val                    # the final testing set (without labels)
    |
    └── pretrained_models
        ├── hrnet_w18.pth
        ├── hrnet_w40.pth
        └── ...

Training

# Please refer to utils/options.py for more arguments
# If hardware supports, more backbones can be trained, such as hrnet_w44, hrnet_w48
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone hrnet_w18 --pretrained --model pspnet --lightweight

Pseudo Labeling & Re-training

# This step is optional but important in performance improvement
# Modify the backbones, models and checkpoint paths in L20-40 in label.py manually according to your saved models
# It is better to ensemble multiple trained models for pseudo labeling

# Pseudo labeling
CUDA_VISIBLE_DEVICES=0,1,2,3 python label.py

# Re-training
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone hrnet_w18 --pretrained --model pspnet --lightweight --use-pseudo-label

Testing

# Modify the backbones, models and checkpoint paths in L39-44 in test.py manually according to your saved models
# Or simply use our final trained models
CUDA_VISIBLE_DEVICES=0,1,2,3 python test.py
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Meta Research 99 Dec 06, 2022
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)

T-Zero This repository serves primarily as codebase and instructions for training, evaluation and inference of T0. T0 is the model developed in Multit

BigScience Workshop 253 Dec 27, 2022
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022