Pretty Tensor - Fluent Neural Networks in TensorFlow

Overview

Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Pretty Tensor provides a set of objects that behave likes Tensors, but also support a chainable object syntax to quickly define neural networks and other layered architectures in TensorFlow.

result = (pretty_tensor.wrap(input_data, m)
          .flatten()
          .fully_connected(200, activation_fn=tf.nn.relu)
          .fully_connected(10, activation_fn=None)
          .softmax(labels, name=softmax_name))

Please look here for full documentation of the PrettyTensor object for all available operations: Available Operations or you can check out the complete documentation

See the tutorial directory for samples: tutorial/

Installation

The easiest installation is just to use pip:

  1. Follow the instructions at tensorflow.org
  2. pip install prettytensor

Note: Head is tested against the TensorFlow nightly builds and pip is tested against TensorFlow release.

Quick start

Imports

import prettytensor as pt
import tensorflow as tf

Setup your input

my_inputs = # numpy array of shape (BATCHES, BATCH_SIZE, DATA_SIZE)
my_labels = # numpy array of shape (BATCHES, BATCH_SIZE, CLASSES)
input_tensor = tf.placeholder(np.float32, shape=(BATCH_SIZE, DATA_SIZE))
label_tensor = tf.placeholder(np.float32, shape=(BATCH_SIZE, CLASSES))
pretty_input = pt.wrap(input_tensor)

Define your model

softmax, loss = (pretty_input.
                 fully_connected(100).
                 softmax_classifier(CLASSES, labels=label_tensor))

Train and evaluate

accuracy = softmax.evaluate_classifier(label_tensor)

optimizer = tf.train.GradientDescentOptimizer(0.1)  # learning rate
train_op = pt.apply_optimizer(optimizer, losses=[loss])

init_op = tf.initialize_all_variables()

with tf.Session() as sess:
    sess.run(init_op)
    for inp, label in zip(my_inputs, my_labels):
        unused_loss_value, accuracy_value = sess.run([loss, accuracy],
                                 {input_tensor: inp, label_tensor: label})
        print 'Accuracy: %g' % accuracy_value

Features

Thin

Full power of TensorFlow is easy to use

Pretty Tensors can be used (almost) everywhere that a tensor can. Just call pt.wrap to make a tensor pretty.

You can also add any existing TensorFlow function to the chain using apply. apply applies the current Tensor as the first argument and takes all the other arguments as normal.

Note: because apply is so generic, Pretty Tensor doesn't try to wrap the world.

Plays well with other libraries

It also uses standard TensorFlow idioms so that it plays well with other libraries, this means that you can use it a little bit in a model or throughout. Just make sure to run the update_ops on each training set (see with_update_ops).

Terse

You've already seen how a Pretty Tensor is chainable and you may have noticed that it takes care of handling the input shape. One other feature worth noting are defaults. Using defaults you can specify reused values in a single place without having to repeat yourself.

with pt.defaults_scope(activation_fn=tf.nn.relu):
  hidden_output2 = (pretty_images.flatten()
                   .fully_connected(100)
                   .fully_connected(100))

Check out the documentation to see all supported defaults.

Code matches model

Sequential mode lets you break model construction across lines and provides the subdivide syntactic sugar that makes it easy to define and understand complex structures like an inception module:

with pretty_tensor.defaults_scope(activation_fn=tf.nn.relu):
  seq = pretty_input.sequential()
  with seq.subdivide(4) as towers:
    towers[0].conv2d(1, 64)
    towers[1].conv2d(1, 112).conv2d(3, 224)
    towers[2].conv2d(1, 32).conv2d(5, 64)
    towers[3].max_pool(2, 3).conv2d(1, 32)

Inception module showing branch and rejoin

Templates provide guaranteed parameter reuse and make unrolling recurrent networks easy:

output = [], s = tf.zeros([BATCH, 256 * 2])

A = (pretty_tensor.template('x')
     .lstm_cell(num_units=256, state=UnboundVariable('state'))

for x in pretty_input_array:
  h, s = A.construct(x=x, state=s)
  output.append(h)

There are also some convenient shorthands for LSTMs and GRUs:

pretty_input_array.sequence_lstm(num_units=256)

Unrolled RNN

Extensible

You can call any existing operation by using apply and it will simply subsitute the current tensor for the first argument.

pretty_input.apply(tf.mul, 5)

You can also create a new operation There are two supported registration mechanisms to add your own functions. @Register() allows you to create a method on PrettyTensor that operates on the Tensors and returns either a loss or a new value. Name scoping and variable scoping are handled by the framework.

The following method adds the leaky_relu method to every Pretty Tensor:

@pt.Register
def leaky_relu(input_pt):
  return tf.select(tf.greater(input_pt, 0.0), input_pt, 0.01 * input_pt)

@RegisterCompoundOp() is like adding a macro, it is designed to group together common sets of operations.

Safe variable reuse

Within a graph, you can reuse variables by using templates. A template is just like a regular graph except that some variables are left unbound.

See more details in PrettyTensor class.

Accessing Variables

Pretty Tensor uses the standard graph collections from TensorFlow to store variables. These can be accessed using tf.get_collection(key) with the following keys:

  • tf.GraphKeys.VARIABLES: all variables that should be saved (including some statistics).
  • tf.GraphKeys.TRAINABLE_VARIABLES: all variables that can be trained (including those before a stop_gradients` call). These are what would typically be called parameters of the model in ML parlance.
  • pt.GraphKeys.TEST_VARIABLES: variables used to evaluate a model. These are typically not saved and are reset by the LocalRunner.evaluate method to get a fresh evaluation.

Authors

Eider Moore (eiderman)

with key contributions from:

  • Hubert Eichner
  • Oliver Lange
  • Sagar Jain (sagarjn)
Owner
Google
Google ❤️ Open Source
Google
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022