Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Related tags

Deep LearningJCW
Overview

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

motivation

Abstract

For practical deep neural network design on mobile devices, it is essential to consider the constraints incurred by the computational resources and the inference latency in various applications. Among deep network acceleration related approaches, pruning is a widely adopted practice to balance the computational resource consumption and the accuracy, where unimportant connections can be removed either channel-wisely or randomly with a minimal impact on model accuracy. The channel pruning instantly results in a significant latency reduction, while the random weight pruning is more flexible to balance the latency and accuracy. In this paper, we present a unified framework with Joint Channel pruning and Weight pruning (JCW), and achieves a better Pareto-frontier between the latency and accuracy than previous model compression approaches. To fully optimize the trade-off between the latency and accuracy, we develop a tailored multi-objective evolutionary algorithm in the JCW framework, which enables one single search to obtain the optimal candidate architectures for various deployment requirements. Extensive experiments demonstrate that the JCW achieves a better trade-off between the latency and accuracy against various state-of-the-art pruning methods on the ImageNet classification dataset.

Framework

framework

Evaluation

Resnet18

Method Latency/ms Accuracy
Uniform 1x 537 69.8
DMCP 341 69.7
APS 363 70.3
JCW 160 69.2
194 69.7
196 69.9
224 70.2

MobileNetV1

Method Latency/ms Accuracy
Uniform 1x 167 70.9
Uniform 0.75x 102 68.4
Uniform 0.5x 53 64.4
AMC 94 70.7
Fast 61 68.4
AutoSlim 99 71.5
AutoSlim 55 67.9
USNet 102 69.5
USNet 53 64.2
JCW 31 69.1
39 69.9
43 69.8
54 70.3
69 71.4

MobileNetV2

Method Latency/ms Accuracy
Uniform 1x 114 71.8
Uniform 0.75x 71 69.8
Uniform 0.5x 41 65.4
APS 110 72.8
APS 64 69.0
DMCP 83 72.4
DMCP 45 67.0
DMCP 43 66.1
Fast 89 72.0
Fast 62 70.2
JCW 30 69.1
40 69.9
44 70.8
59 72.2

Requirements

  • torch
  • torchvision
  • numpy
  • scipy

Usage

The JCW works in a two-step fashion. i.e. the search step and the training step. The search step seaches for the layer-wise channel numbers and weight sparsity for Pareto-optimal models. The training steps trains the searched models with ADMM. We give a simple example for resnet18.

The search step

  1. Modify the configuration file

    First, open the file experiments/res18-search.yaml:

    vim experiments/res18-search.yaml

    Go to the 44th line and find the following codes:

    DATASET:
      data: ImageNet
      root: /path/to/imagenet
      ...
    

    and modify the root property of DATASET to the path of ImageNet dataset on your machine.

  2. Apply the search

    After modifying the configuration file, you can simply start the search by:

    python emo_search.py --config experiments/res18-search.yaml | tee experiments/res18-search.log

    After searching, the search results will be saved in experiments/search.pth

The training step

After searching, we can train the searched models by:

  1. Modify the base configuration file

    Open the file experiments/res18-train.yaml:

    vim experiments/res18-train.yaml

    Go to the 5th line, find the following codes:

    root: &root /path/to/imagenet
    

    and modify the root property to the path of ImageNet dataset on your machine.

  2. Generate configuration files for training

    After modifying the base configuration file, we are ready to generate the configuration files for training. To do that, simply run the following command:

    python scripts/generate_training_configs.py --base-config experiments/res18-train.yaml --search-result experiments/search.pth --output ./train-configs 

    After running the above command, the training configuration files will be written into ./train-configs/model-{id}/train.yaml.

  3. Apply the training

    After generating the configuration files, simply run the following command to train one certain model:

    python train.py --config xxxx/xxx/train.yaml | tee xxx/xxx/train.log
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023