CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

Overview

CV Backbones

including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab.

News

2022/01/05 PyramidTNT: An improved TNT baseline is released.

2021/09/28 The paper of TNT (Transformer in Transformer) is accepted by NeurIPS 2021.

2021/09/18 The extended version of Versatile Filters is accepted by T-PAMI.

2021/08/30 GhostNet paper is selected as the Most Influential CVPR 2020 Papers.

2021/08/26 The codes of LegoNet and Versatile Filters has been merged into this repo.

2021/06/15 The code of TNT (Transformer in Transformer) has been released in this repo.

2020/10/31 GhostNet+TinyNet achieves better performance. See details in our NeurIPS 2020 paper: arXiv.

2020/06/10 GhostNet is included in PyTorch Hub.


GhostNet Code

This repo provides GhostNet pretrained models and inference code for TensorFlow and PyTorch:

For training, please refer to tinynet or timm.

TinyNet Code

This repo provides TinyNet pretrained models and inference code for PyTorch:

TNT Code

This repo provides training code and pretrained models of TNT (Transformer in Transformer) for PyTorch:

The code of PyramidTNT is also released:

LegoNet Code

This repo provides the implementation of paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters (ICML 2019)

Versatile Filters Code

This repo provides the implementation of paper Learning Versatile Filters for Efficient Convolutional Neural Networks (NeurIPS 2018)

Citation

@inproceedings{ghostnet,
  title={GhostNet: More Features from Cheap Operations},
  author={Han, Kai and Wang, Yunhe and Tian, Qi and Guo, Jianyuan and Xu, Chunjing and Xu, Chang},
  booktitle={CVPR},
  year={2020}
}
@inproceedings{tinynet,
  title={Model Rubik’s Cube: Twisting Resolution, Depth and Width for TinyNets},
  author={Han, Kai and Wang, Yunhe and Zhang, Qiulin and Zhang, Wei and Xu, Chunjing and Zhang, Tong},
  booktitle={NeurIPS},
  year={2020}
}
@inproceedings{tnt,
  title={Transformer in transformer},
  author={Han, Kai and Xiao, An and Wu, Enhua and Guo, Jianyuan and Xu, Chunjing and Wang, Yunhe},
  booktitle={NeurIPS},
  year={2021}
}
@inproceedings{legonet,
    title={LegoNet: Efficient Convolutional Neural Networks with Lego Filters},
    author={Yang, Zhaohui and Wang, Yunhe and Liu, Chuanjian and Chen, Hanting and Xu, Chunjing and Shi, Boxin and Xu, Chao and Xu, Chang},
    booktitle={ICML},
    year={2019}
  }
@inproceedings{wang2018learning,
  title={Learning versatile filters for efficient convolutional neural networks},
  author={Wang, Yunhe and Xu, Chang and Chunjing, XU and Xu, Chao and Tao, Dacheng},
  booktitle={NeurIPS},
  year={2018}
}

Other versions of GhostNet

This repo provides the TensorFlow/PyTorch code of GhostNet. Other versions and applications can be found in the following:

  1. timm: code with pretrained model
  2. Darknet: cfg file, and description
  3. Gluon/Keras/Chainer: code
  4. Paddle: code
  5. Bolt inference framework: benckmark
  6. Human pose estimation: code
  7. YOLO with GhostNet backbone: code
  8. Face recognition: cavaface, FaceX-Zoo, TFace
Comments
  • TypeError: __init__() got an unexpected keyword argument 'bn_tf'

    TypeError: __init__() got an unexpected keyword argument 'bn_tf'

    Hello, I want to ask what caused the following error when running the train.py file? thank you “ TypeError: init() got an unexpected keyword argument 'bn_tf' ”

    opened by ModeSky 16
  • Counting ReLU vs HardSwish FLOPs

    Counting ReLU vs HardSwish FLOPs

    Thank you very much for sharing the source code. I have a question related to FLOPs counting for ReLU and HardSwish. I saw in the paper the flops are the same in ReLU and HardSwish. Can you explain this situation? image

    opened by jahongir7174 10
  • kernel size in primary convolution of Ghost module

    kernel size in primary convolution of Ghost module

    Hi, It is said in your paper that the primary convolution in Ghost module can have customized kernel size, which is a major difference from existing efficient convolution schemes. However, it seems that in this code all the kernel size of primary convolution in Ghost module are set to [1, 1], and the kernel set in _CONV_DEFS_0 are only used in blocks of stride=2. Is it set intentionally?

    opened by YUHAN666 9
  • 用GhostModule替换Conv2d,loss降的很慢?

    用GhostModule替换Conv2d,loss降的很慢?

    我直接将efficientnet里面的MBConvBlock中的Conv2d替换为GhostModule: Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) 替换为 GhostModule(inp, oup), 其他参数不变,为什么损失比以前收敛的更慢了,一直降不下来?请问需要修改其他什么参数吗?

    opened by yc-cui 8
  • Training hyperparams on ImageNet

    Training hyperparams on ImageNet

    Hi, thanks for sharing such a wonderful work, I'd like to reproduce your results on ImageNet, could you please specify training parameters such as initial learning rate, how to decay it, batch size, etc. It would be even better if you can provide tricks to train GhostNet, such as label smoothing and data augmentation. Thx!

    good first issue 
    opened by sean-zhuh 8
  • Why did you exclude EfficientNetB0 from Accuracy-Latency chart?

    Why did you exclude EfficientNetB0 from Accuracy-Latency chart?

    @iamhankai Hi,

    Great work!

    1. Why did you exclude EfficientNetB0 (0.390 BFlops - 76.3% Top1) from Accuracy-Latency chart?

    2. Also what mini_batch_size did you use for training GhostNet?

    flops_latency

    opened by AlexeyAB 8
  • VIG pretrained weights

    VIG pretrained weights

    @huawei-noah-admin cna you please share the VIG pretraiend model on google drive or one drive as baidu is not accessible from our end

    THank in advance

    opened by abhigoku10 7
  • The implementation of Isotropic architecture

    The implementation of Isotropic architecture

    Hi, thanks for sharing this impressive work. The paper mentioned two architectures, Isotropic one and pyramid one. I noticed that in the code, this is a reduce_ratios, and this reduce_ratios are used by a avg_pooling operation to calculate before building the graph. I am wondering whether all I need to do is setting this reduce_ratios to [1,1,1,1] if I want to implement the Isotropic architecture. Thanks.

    self.n_blocks = sum(blocks) channels = opt.channels reduce_ratios = [4, 2, 1, 1] dpr = [x.item() for x in torch.linspace(0, drop_path, self.n_blocks)] num_knn = [int(x.item()) for x in torch.linspace(k, k, self.n_blocks)]

    opened by buptxiaofeng 6
  • Gradient overflow occurs while training tnt-ti model

    Gradient overflow occurs while training tnt-ti model

    ^@^@Train: 41 [ 0/625 ( 0%)] Loss: 4.564162 (4.5642) Time: 96.744s, 21.17/s (96.744s, 21.17/s) LR: 8.284e-04 Data: 94.025 (94.025) ^@^@^@^@Train: 41 [ 50/625 ( 8%)] Loss: 4.395192 (4.4797) Time: 2.742s, 746.96/s (7.383s, 277.38/s) LR: 8.284e-04 Data: 0.057 (4.683) ^@^@^@^@Train: 41 [ 100/625 ( 16%)] Loss: 4.424296 (4.4612) Time: 2.741s, 747.15/s (6.529s, 313.66/s) LR: 8.284e-04 Data: 0.056 (3.831) Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0

    And the top-1 acc is only 0.2 after 40 epochs.

    Any tips available here, dear @iamhankai @yitongh

    opened by jimmyflycv 6
  • Bloated model

    Bloated model

    Hi, I am using Ghostnet backbone for training YoloV3 model in Tensorflow, but I am getting a bloated model. The checkpoint data size is approx. 68MB, but the checkpoint given here is of approx 20MB https://github.com/huawei-noah/ghostnet/blob/master/tensorflow/models/ghostnet_checkpoint.data-00000-of-00001

    I am also training EfficientNet model with YoloV3 and that seems to be working fine, without any bloated size.

    Could anyone or the author please confirm if this is the correct architecture or anything seems weird? I have attached the Ghostnet architecture file out of the code.

    Thanks. ghostnet_model_arch.txt

    opened by ghost 6
  • Replace Conv2d in my network, however it becomes slower, why?

    Replace Conv2d in my network, however it becomes slower, why?

    Above all, thanks for your great work! It really inspires me a lot! But now I have a question.

    I replace all the Conv2d operations in my network except the final ones, the model parameters really becomes much more less. However, when testing, I found that the average forward time decreases a lot by the replacement (from 428FPS down to 354FPS). So, is this a normal phenomenon? Or is this because of the concat operation?

    opened by FunkyKoki 6
  • VIG for segmenation

    VIG for segmenation

    @iamhankai thanks for open-sourcing the code base . Can you please let me knw how to use the pvig for segmentation related activities its really helpful

    THanks in advance

    opened by abhigoku10 0
  • higher performance of ViG

    higher performance of ViG

    I try to train ViG-S on ImageNet and get 80.54% top1 accuracy, which is higher than that in paper, 80.4%. I wonder if 80.4 is the average of multiple trainings? If yes, how many reps do you use?

    opened by tdzdog 9
Releases(GhostNetV2)
Owner
HUAWEI Noah's Ark Lab
Working with and contributing to the open source community in data mining, artificial intelligence, and related fields.
HUAWEI Noah's Ark Lab
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
Python implementation of "Single Image Haze Removal Using Dark Channel Prior"

##Dependencies pillow(~2.6.0) Numpy(~1.9.0) If the scripts throw AttributeError: __float__, make sure your pillow has jpeg support e.g. try: $ sudo ap

Joyee Cheung 73 Dec 20, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
202 Jan 06, 2023
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022