Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

Overview

DTI-Sprites

Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper

Check out our paper and webpage for details!

teaser.jpg

If you find this code useful in your research, please cite:

@article{monnier2021dtisprites,
  title={{Unsupervised Layered Image Decomposition into Object Prototypes}},
  author={Monnier, Tom and Vincent, Elliot and Ponce, Jean and Aubry, Mathieu},
  journal={arXiv},
  year={2021},
}

Installation 👷

1. Create conda environment

conda env create -f environment.yml
conda activate dti-sprites

Optional: some monitoring routines are implemented, you can use them by specifying the visdom port in the config file. You will need to install visdom from source beforehand

git clone https://github.com/facebookresearch/visdom
cd visdom && pip install -e .

2. Download non-torchvision datasets

./download_data.sh

This command will download following datasets:

  • Tetrominoes, Multi-dSprites and CLEVR6 (link to the original repo multi-object datasets with raw tfrecords)
  • GTSRB (link to the original dataset page)
  • Weizmann Horse database (link to the original dataset page)
  • Instagram collections associated to #santaphoto and #weddingkiss (link to the original repo with datasets links and descriptions)

NB: it may happen that gdown hangs, if so you can download them by hand with following gdrive links, unzip and move them to the datasets folder:

How to use 🚀

1. Launch a training

cuda=gpu_id config=filename.yml tag=run_tag ./pipeline.sh

where:

  • gpu_id is a target cuda device id,
  • filename.yml is a YAML config located in configs folder,
  • run_tag is a tag for the experiment.

Results are saved at runs/${DATASET}/${DATE}_${run_tag} where DATASET is the dataset name specified in filename.yml and DATE is the current date in mmdd format. Some training visual results like sprites evolution and reconstruction examples will be saved. Here is an example from Tetrominoes dataset:

Reconstruction examples

tetro_rec.gif

Sprites evolution and final

tetro_sprites.gif

tetro_sprites_final.png

More visual results are available at https://imagine.enpc.fr/~monniert/DTI-Sprites/extra_results/.

2. Reproduce our quantitative results

To launch 5 runs on Tetrominoes benchmark and reproduce our results:

cuda=gpu_id config=tetro.yml tag=default ./multi_pipeline.sh

Available configs are:

  • Multi-object benchmarks: tetro.yml, dpsrites_gray.yml, clevr6.yml
  • Clustering benchmarks: gtsrb8.yml, svhn.yml
  • Cosegmentation dataset: horse.yml

3. Reproduce our qualitative results on Instagram collections

  1. (skip if already downloaded with script above) Create a santaphoto dataset by running process_insta_santa.sh script. It can take a while to scrape the 10k posts from Instagram.
  2. Launch training with cuda=gpu_id config=instagram.yml tag=santaphoto ./pipeline.sh

That's it!

Top 8 sprites discovered

santa_sprites.jpg

Decomposition examples

santa_rec.jpg

Further information

If you like this project, please check out related works on deep transformations from our group:

dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis

This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis Install the package in the requirements.txt, the

108 Dec 23, 2022