simple artificial intelligence utilities

Related tags

Deep Learningsimpleai
Overview

Simple AI

Project home: http://github.com/simpleai-team/simpleai

This lib implements many of the artificial intelligence algorithms described on the book "Artificial Intelligence, a Modern Approach", from Stuart Russel and Peter Norvig. We strongly recommend you to read the book, or at least the introductory chapters and the ones related to the components you want to use, because we won't explain the algorithms here.

This implementation takes some of the ideas from the Norvig's implementation (the aima-python lib), but it's made with a more "pythonic" approach, and more emphasis on creating a stable, modern, and maintainable version. We are testing the majority of the lib, it's available via pip install, has a standard repo and lib architecture, well documented, respects the python pep8 guidelines, provides only working code (no placeholders for future things), etc. Even the internal code is written with readability in mind, not only the external API.

At this moment, the implementation includes:

  • Search
    • Traditional search algorithms (not informed and informed)
    • Local Search algorithms
    • Constraint Satisfaction Problems algorithms
    • Interactive execution viewers for search algorithms (web-based and terminal-based)
  • Machine Learning
    • Statistical Classification

Installation

Just get it:

pip install simpleai

And if you want to use the interactive search viewers, also install:

pip install pydot flask

You will need to have pip installed on your system. On linux install the python-pip package, on windows follow this. Also, if you are on linux and not working with a virtualenv, remember to use sudo for both commands (sudo pip install ...).

Examples

Simple AI allows you to define problems and look for the solution with different strategies. Another samples are in the samples directory, but here is an easy one.

This problem tries to create the string "HELLO WORLD" using the A* algorithm:

from simpleai.search import SearchProblem, astar

GOAL = 'HELLO WORLD'


class HelloProblem(SearchProblem):
    def actions(self, state):
        if len(state) < len(GOAL):
            return list(' ABCDEFGHIJKLMNOPQRSTUVWXYZ')
        else:
            return []

    def result(self, state, action):
        return state + action

    def is_goal(self, state):
        return state == GOAL

    def heuristic(self, state):
        # how far are we from the goal?
        wrong = sum([1 if state[i] != GOAL[i] else 0
                    for i in range(len(state))])
        missing = len(GOAL) - len(state)
        return wrong + missing

problem = HelloProblem(initial_state='')
result = astar(problem)

print(result.state)
print(result.path())

More detailed documentation

You can read the docs online here. Or for offline access, you can clone the project code repository and read them from the docs folder.

Help and discussion

Join us at the Simple AI google group.

Authors

  • Many people you can find on the contributors section.
  • Special acknowledgements to Machinalis for the time provided to work on this project. Machinalis also works on some other very interesting projects, like Quepy and more.
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

7 Mar 28, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Sequential GCN for Active Learning

Sequential GCN for Active Learning Please cite if using the code: Link to paper. Requirements: python 3.6+ torch 1.0+ pip libraries: tqdm, sklearn, sc

45 Dec 26, 2022
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022