Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

Overview

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles

Dependency

  • ROS (tested with Kinetic and Melodic)
  • PCL

Install

Use the following commands to download and compile the package.

cd ~/catkin_ws/src
git clone https://github.com/jkk-research/urban_road_filter
catkin build urban_road_filter

Getting started

Cite & paper

If you use any of this code please consider citing the paper:


@Article{roadfilt2022horv,
    title = {Real-Time LIDAR-Based Urban Road and Sidewalk Detection for Autonomous Vehicles},
    author = {Horváth, Ernő and Pozna, Claudiu and Unger, Miklós},
    journal = {Sensors},
    volume = {22},
    year = {2022},
    number = {1},
    url = {https://www.mdpi.com/1424-8220/22/1/194},
    issn = {1424-8220},
    doi = {10.3390/s22010194}
}

Realated solutions

Videos and images

Comments
  • If the given dataset have a preprocessing?

    If the given dataset have a preprocessing?

    Thanks for your great work! I try to do some experiment on kitti dataset. But I found it does not have the same effect as yours. The blue marks, as shown in the following image, are false positive. I want to wonder if the given dataset have a preprocessing? img

    question 
    opened by LuYoKa 6
  • I need help

    I need help

    Hello, I follow the steps to generate this error. How should I solve it? Thanks Please submit a full bug report, with preprocessed source if appropriate. See <file:///usr/share/doc/gcc-7/README.Bugs> for instructions. urban_road_filter/CMakeFiles/lidar_road.dir/build.make:75: recipe for target 'urban_road_filter/CMakeFiles/lidar_road.dir/src/lidar_segmentation.cpp.o' failed make[2]: *** [urban_road_filter/CMakeFiles/lidar_road.dir/src/lidar_segmentation.cpp.o] Error 4 make[2]: *** 正在等待未完成的任务.... c++: internal compiler error: 已杀死 (program cc1plus) Please submit a full bug report, with preprocessed source if appropriate. See <file:///usr/share/doc/gcc-7/README.Bugs> for instructions. urban_road_filter/CMakeFiles/lidar_road.dir/build.make:131: recipe for target 'urban_road_filter/CMakeFiles/lidar_road.dir/src/z_zero_method.cpp.o' failed make[2]: *** [urban_road_filter/CMakeFiles/lidar_road.dir/src/z_zero_method.cpp.o] Error 4 c++: internal compiler error: 已杀死 (program cc1plus) Please submit a full bug report, with preprocessed source if appropriate. See <file:///usr/share/doc/gcc-7/README.Bugs> for instructions. urban_road_filter/CMakeFiles/lidar_road.dir/build.make:89: recipe for target 'urban_road_filter/CMakeFiles/lidar_road.dir/src/main.cpp.o' failed make[2]: *** [urban_road_filter/CMakeFiles/lidar_road.dir/src/main.cpp.o] Error 4 CMakeFiles/Makefile2:2521: recipe for target 'urban_road_filter/CMakeFiles/lidar_road.dir/all' failed make[1]: *** [urban_road_filter/CMakeFiles/lidar_road.dir/all] Error 2 Makefile:145: recipe for target 'all' failed make: *** [all] Error 2 Invoking "make -j8 -l8" failed

    question 
    opened by chaohe1998 2
  • Follow ROS naming conventions

    Follow ROS naming conventions

    • Naming ROS resources: http://wiki.ros.org/ROS/Patterns/Conventions
    • Package naming: https://www.ros.org/reps/rep-0144.html
    • Naming conventions for drivers: https://ros.org/reps/rep-0135.html
    • Parameter namespacing: http://wiki.ros.org/Parameter%20Server

    e.g. visualization_MarkerArray is not a valid topic name

    enhancement 
    opened by horverno 1
  • StarShapedSearch algorithm not functioning properly

    StarShapedSearch algorithm not functioning properly

    The "star shaped search" detection algorithm seems to function with reduced range and [by angle] only in the first quarter of its detection area (counter-clockwise / positive z angles from x-axis, right-handed coordinate-system).

    The images below show the output using only this algorithm (other detection methods, blind spot correction and output polygon simplification turned off).

    [red line = polygon connecting the detected points]

    2

    3

    opened by csaplaci 0
  • Semi-automated vector map building

    Semi-automated vector map building

    New feature:

    Based on the urban_road_filter output a semi-automated vector map building (e.g. lanelet2 / opendrive) in the global frame (e.g. map)

    (small help)

    enhancement feature 
    opened by horverno 1
Releases(paper)
Owner
JKK - Vehicle Industry Research Center
Széchenyi University's Research Center
JKK - Vehicle Industry Research Center
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone In our recent paper we propose the YourTTS model. YourTTS bri

Edresson Casanova 390 Dec 29, 2022
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
exponential adaptive pooling for PyTorch

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling Abstract Pooling layers are essential building blocks of Convolutional Ne

Alexandros Stergiou 55 Jan 04, 2023
FwordCTF 2021 Infrastructure and Source code of Web/Bash challenges

FwordCTF 2021 You can find here the source code of the challenges I wrote (Web and Bash) in FwordCTF 2021 and the source code of the platform with our

Kahla 5 Nov 25, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your

Hao Tang 424 Dec 02, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17k Jan 02, 2023
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022