Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Overview

Natural Posterior Network

This repository provides the official implementation of the Natural Posterior Network (NatPN) and the Natural Posterior Ensemble (NatPE) as presented in the following paper:

Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions
Bertrand Charpentier*, Oliver Borchert*, Daniel Zügner, Simon Geisler, Stephan Günnemann
International Conference on Learning Representations, 2022

Features

The implementation of NatPN that is found in this repository provides the following features:

  • High-level estimator interface that makes NatPN as easy to use as Scikit-learn estimators
  • Simple bash script to train and evaluate NatPN
  • Ready-to-use PyTorch Lightning data modules with 8 of the 9 datasets used in the paper*

In addition, we provide a public Weights & Biases project. This project will be filled with training and evaluation runs that allow you (1) to inspect the performance of different NatPN models and (2) to download the model parameters. See the example notebook for instructions on how to use such a pretrained model.

*The Kin8nm dataset is not included as it has disappeared from the UCI Repository.

Installation

Prior to installation, you may want to install all dependencies (Python, CUDA, Poetry). If you are running on an AWS EC2 instance with Ubuntu 20.04, you can use the provided bash script:

sudo bash bin/setup-ec2.sh

In order to use the code in this repository, you should first clone the repository:

git clone [email protected]:borchero/natural-posterior-network.git natpn

Then, in the root of the repository, you can install all dependencies via Poetry:

poetry install

Quickstart

Shell Script

To simply train and evaluate NatPN on a particular dataset, you can use the train shell script. For example, to train and evaluate NatPN on the Sensorless Drive dataset, you can run the following command in the root of the repository:

poetry run train --dataset sensorless-drive

The dataset gets downloaded automatically the first time this command is called. The performance metrics of the trained model is printed to the console and the trained model is discarded. In order to track both the metrics and the model parameters via Weights & Biases, use the following command:

poetry run train --dataset sensorless-drive --experiment first-steps

To list all options of the shell script, simply run:

poetry run train --help

This command will also provide explanations for all the parameters that can be passed.

Estimator

If you want to use NatPN from your code, the easiest way to get started is to use the Scikit-learn-like estimator:

from natpn import NaturalPosteriorNetwork

The documentation of the estimator's __init__ method provides a comprehensive overview of all the configuration options. For a simple example of using the estimator, refer to the example notebook.

Module

If you need even more customization, you can use natpn.nn.NaturalPosteriorNetworkModel directly. The natpn.nn package provides plenty of documentation and allows to configure your NatPN model as much as possible.

Further, the natpn.model package provides PyTorch Lightning modules which allow you to train, evaluate, and fine-tune models.

Running Hyperparameter Searches

If you want to run hyperparameter searches on a local Slurm cluster, you can use the files provided in the sweeps directory. To run the grid search, simply execute the file:

poetry run python sweeps/<file>

To make sure that your experiment is tracked correctly, you should also set the WANDB_PROJECT environment variable in a place that is read by the slurm script (found in sweeps/slurm).

Feel free to adapt the scripts to your liking to run your own hyperparameter searches.

Citation

If you are using the model or the code in this repository, please cite the following paper:

@inproceedings{natpn,
    title={{Natural} {Posterior} {Network}: {Deep} {Bayesian} {Predictive} {Uncertainty} for {Exponential} {Family} {Distributions}},
    author={Charpentier, Bertrand and Borchert, Oliver and Z\"{u}gner, Daniel and Geisler, Simon and G\"{u}nnemann, Stephan},
    booktitle={International Conference on Learning Representations},
    year={2022}
}

Contact Us

If you have any questions regarding the code, please contact us via mail.

License

The code in this repository is licensed under the MIT License.

Owner
Oliver Borchert
MSc Data Engineering and Analytics @ TUM | Applied Science Intern @ AWS
Oliver Borchert
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
Answering Open-Domain Questions of Varying Reasoning Steps from Text

This repository contains the authors' implementation of the Iterative Retriever, Reader, and Reranker (IRRR) model in the EMNLP 2021 paper "Answering Open-Domain Questions of Varying Reasoning Steps

26 Dec 22, 2022
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Gengshan Yang 157 Nov 21, 2022
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022