Language Models Can See: Plugging Visual Controls in Text Generation

Overview

Language Models Can See: Plugging Visual Controls in Text Generation

Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lingpeng Kong, and Nigel Collier

This repository contains code, models, and other related resources of our paper [Language Models Can See: Plugging Visual Controls in Text Generation].

⭐ If you are also interested in open-ended text generation and would like to see more details of our contrastive search decoding method, please refer to our SimCTG [paper] and [repo].

⭐ Replicate has provided a great web [demo] of MAGIC that is super easy to use and to interact with. Check it out!


MAGIC


Catalogue:


1. Introduction:

Generative language models (LMs) such as GPT-2/3 can be prompted to generate text with remarkable quality. While they are designed for text-prompted generation, it remains an open question how the generation process could be guided by modalities beyond text such as images. In this work, we propose a training-free framework, called MAGIC (iMAge-Guided text generatIon with CLIP), for plugging in visual controls in the generation process and enabling LMs to perform multimodal tasks (e.g., image captioning) in a zero-shot manner. MAGIC is a simple yet efficient plug-and-play framework, which directly combines an off-the-shelf LM (i.e., GPT-2) and an image-text matching model (i.e., CLIP) for image-grounded text generation. During decoding, MAGIC influences the generation of the LM by introducing a CLIP-induced score, called magic score, which regularizes the generated result to be semantically related to a given image while being coherent to the previously generated context. Notably, the proposed decoding scheme does not involve any gradient update operation, therefore being computationally efficient. On the challenging task of zero-shot image captioning, MAGIC outperforms the state-of-the-art method by notable margins with a nearly 27 times decoding speedup. MAGIC is a flexible framework and is theoretically compatible with any text generation tasks that incorporate image grounding. In the experiments, we showcase that it is also capable of performing visually grounded story generation given both an image and a text prompt.


2. News:

  • [2022/05/06] MAGIC is publicly released!

3. Citation:

If you find our paper and resources useful, please kindly leave a star and cite our papers. Thanks!

@article{DBLP:journals/corr/abs-2205-02655,
  author    = {Yixuan Su and
               Tian Lan and
               Yahui Liu and
               Fangyu Liu and
               Dani Yogatama and
               Yan Wang and
               Lingpeng Kong and
               Nigel Collier},
  title     = {Language Models Can See: Plugging Visual Controls in Text Generation},
  journal   = {CoRR},
  volume    = {abs/2205.02655},
  year      = {2022},
  url       = {https://doi.org/10.48550/arXiv.2205.02655},
  doi       = {10.48550/arXiv.2205.02655},
  eprinttype = {arXiv},
  eprint    = {2205.02655},
  timestamp = {Wed, 11 May 2022 17:29:40 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2205-02655.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

@article{DBLP:journals/corr/abs-2202-06417,
  author    = {Yixuan Su and
               Tian Lan and
               Yan Wang and
               Dani Yogatama and
               Lingpeng Kong and
               Nigel Collier},
  title     = {A Contrastive Framework for Neural Text Generation},
  journal   = {CoRR},
  volume    = {abs/2202.06417},
  year      = {2022},
  url       = {https://arxiv.org/abs/2202.06417},
  eprinttype = {arXiv},
  eprint    = {2202.06417},
  timestamp = {Fri, 18 Feb 2022 12:23:53 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2202-06417.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

4. Environment Setup:

python version: 3.8
pip3 install -r requirements.txt

5. Zero-Shot Image Captioning:

5.1. Implementation of Experiments:

To ensure the reproductity of our work, we provide all related resources to implement our experiments on the task of zero-shot image captioning. Please refer more details [here].

5.2. Example Usage of Magic Search:

In the following, we illustrate how to perform zero-shot image captioning with magic search. Specifically, we show how to generate the results as shown in our case study in the paper.

Open In Colab

5.2.1. Load Language Model:

We first load the language model as:

import sys
sys.path.append(r'./image_captioning/language_model/')
from simctg import SimCTG
language_model_name = r'cambridgeltl/magic_mscoco'
sos_token, pad_token = r'<-start_of_text->', r'<-pad->'
generation_model = SimCTG(language_model_name, sos_token, pad_token)
generation_model.eval()
5.2.2. Load CLIP:

Then, we load the CLIP model as:

import sys
sys.path.append(r'./image_captioning/clip/')
from clip import CLIP
model_name = "openai/clip-vit-base-patch32"
clip = CLIP(model_name)
clip.eval()
5.2.3. Prepare Start Token:

Note that, the language model always starts generation with a start of sentence token. Here, we prepare the input ids of the start token.

import torch
sos_token = r'<-start_of_text->'
start_token = generation_model.tokenizer.tokenize(sos_token)
start_token_id = generation_model.tokenizer.convert_tokens_to_ids(start_token)
input_ids = torch.LongTensor(start_token_id).view(1,-1)
5.2.4. Load Image:

To generate the caption of a random image, we need to load the image as:

from PIL import Image             # to load images
from IPython.display import display # to display images
image_name_list = ['COCO_val2014_000000336777.jpg', 'COCO_val2014_000000182784.jpg', 'COCO_val2014_000000299319.jpg', 'COCO_val2014_000000516750.jpg',
                   'COCO_val2014_000000207151.jpg', 'COCO_val2014_000000078707.jpg', 'COCO_val2014_000000027440.jpg', 'COCO_val2014_000000033645.jpg',
                   'COCO_val2014_000000348905.jpg', 'COCO_val2014_000000545385.jpg', 'COCO_val2014_000000210032.jpg', 'COCO_val2014_000000577526.jpg']
index = 1 
'''
   you can easily reproduce all results shown in our case study (index from 0 to 3) 
   and the results in the appendix (index from 4 to 11).
'''

image_path = r'./image_captioning/example_images/' + image_name_list[index]
image_instance = Image.open(image_path)
display(image_instance)
5.2.5. Zero-Shot Image Captioning with Magic Search:

Now, let's generate the image caption with magic search!

'''
   setup the configurations of magic search
      k: the k in magic search
      alpha: the alpha in magic search
      beta: the beta in magic search
      decoding_len: the number of tokens to generate
'''
k, alpha, beta, decoding_len = 45, 0.1, 2.0, 16
eos_token = '<|endoftext|>'
output = generation_model.magic_search(input_ids, k, 
        alpha, decoding_len, beta, image_instance, clip, 60)
print (output)
'''
   A large cow standing in a street stall.
'''
5.2.6. Reproduce Our Results in the Paper:

If you would like to reproduce all the results shown in the case study and appendix of our paper, you can run this demo file as

python image_caption_demo.py

6. Visually Grounded Story Generation:

6.1. Implementation of Experiments:

To ensure the reproductity of our work, we provide all related resources to implement our experiments on the task of visually grounded story generation. Please refer more details [here].

6.2. Example Usage of Magic Search:

In the following, we illustrate how to perform visually grounded story generation with magic search. Specifically, we show how to generate the results as shown in our case study in the paper.

Open In Colab

6.2.1. Load Language Model:

We first load the language model and prepare the story title as:

import sys
sys.path.append(r'./story_generation/language_model')
from transformers import AutoTokenizer
from simctg import SimCTG
language_model_name = r'cambridgeltl/simctg_rocstories'
tokenizer = AutoTokenizer.from_pretrained(language_model_name)
generation_model = SimCTG(language_model_name, tokenizer.pad_token_id)
generation_model.eval()

import torch
title = 'Ice Cream Tasting <|endoftext|>'
title_tokens = tokenizer.tokenize(title)
title_id_list = tokenizer.convert_tokens_to_ids(title_tokens)
title_ids = torch.LongTensor(title_id_list).view(1,-1)
6.2.2. Load CLIP:

Then, we load the CLIP model as:

import sys
sys.path.append(r'./story_generation/clip')
from clip import CLIP
model_name = "openai/clip-vit-base-patch32"
clip = CLIP(model_name)
clip.eval()
6.3.2. Get the Related Image:

Next, let's get the images that are related to the story tile. We provide two ways of doing it as shown below:

6.3.2.1. Retrieve from Image Index:

The first way is to retrieve the images from a constructed image index. Before running the following commands, please make sure you have built the image index from scrath as described [here] or downloaded our provided image index as described [here].

After the image index is ready, we can load the image index as

# build image index
import sys
sys.path.append(r'./story_generation/image_index')
from imageindex import ImageIndex
index_path = r'./story_generation/data/image_index/images_index_data/index_matrix.txt'
mapping_dict_path = r'./story_generation/data/image_index/images_index_data/mapping_dict.json'
image_folder_prefix_path = r'./story_generation/data/image_index/images/'
index = ImageIndex(index_path, mapping_dict_path, image_folder_prefix_path, clip)

Then, we can retrieve the top-1 images as

image_name_list, image_instance_list = index.search_image(title, top_k=1)
'''
   image_name_list: the list of names of the retrieved images
   image_instance_list: the list of images that we retrieve
'''

Let's see the retrieved images we got

from IPython.display import display
# display the top-1 image
display(image_instance_list[0])
6.3.2.2. Directly Load Image:

Alternatively, if you have not prepared the image index, we have provided these the image in the repo. You can directly load it as

from PIL import Image
image_name_list = ['avopix-284658167.jpg']
image_instance_list = []
for name in image_name_list:
    image_path = r'./story_generation/example_images/' + name
    image_instance = Image.open(image_path)
    image_instance_list.append(image_instance)
6.3.3. Visually Grounded Story Generation with Magic Search:

[Note] Recall that, in this example, our story title is 'Ice Cream Tasting <|endoftext|>'.

Now, let's generate the story conditioned on the retrieved image

from IPython.display import display
k, alpha, beta, decoding_len  = 5, 0.6, 0.15, 100
'''
   The k, alpha, beta correspond to the k, alpha, beta in magic search
'''
image_instance = image_instance_list[0]
eos_token = r'<|endoftext|>'
output, _ = generation_model.magic_search(title_ids, k, alpha, decoding_len, beta, image_instance, 
        clip, 60, eos_token)
_, generated_story = generation_model.parse_generated_result(output, num_of_sentences_to_keep=5)
print (generated_story)
display(image_instance)
'''
   My family went to a ice cream shop. They ordered three flavors of ice cream. The first one was 
   strawberry, the second was chocolate, and the third was orange. I was excited to try all three 
   flavors. It was very good and I had a great time at the ice cream shop.
'''

Then, let's see what we can get using the vanilla contrastive search without the image grounding.

k, alpha, decoding_len  = 5, 0.6, 100
'''
   The k and alpha correspond to the k and alpha in contrastive search
'''
eos_token = r'<|endoftext|>'
output, _ = generation_model.fast_contrastive_search(title_ids, k, alpha, decoding_len, eos_token)
_, generated_story = generation_model.parse_generated_result(output, num_of_sentences_to_keep=5)
print (generated_story)
'''
   My family went to a ice cream shop. We ordered the Ice Cream Truck. It was delicious. The customer 
   service was terrible. We had to leave for another day.
'''
6.3.4. Reproduce Our Results in the Paper:

If you would like to reproduce all the results shown in the case study and appendix of our paper, you can run this demo file as

python story_generation_demo.py

7. Contact

If you have any questions, feel free to contact me via (ys484 at cam.ac.uk).


8. MAGIC Elsewhere

We thank the community's effort for extending MAGIC!

  • Replicate has provided a great [demo] of MAGIC that is super easy to use. Thanks for the effort!
Owner
Yixuan Su
I am a third-year (final-year) Ph.D. student at the Language Technology Lab of the University of Cambridge.
Yixuan Su
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University πŸ“– Table of

Hosein Damavandi 6 Aug 22, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
Cross-view Transformers for real-time Map-view Semantic Segmentation (CVPR 2022 Oral)

Cross View Transformers This repository contains the source code and data for our paper: Cross-view Transformers for real-time Map-view Semantic Segme

Brady Zhou 363 Dec 25, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
[ECE NTUA] πŸ‘ Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
A GUI for Face Recognition, based upon Docker, Tkinter, GPU and a camera device.

Face Recognition GUI This repository is a GUI version of Face Recognition by Adam Geitgey, where e.g. Docker and Tkinter are utilized. All the materia

Kasper Henriksen 6 Dec 05, 2022
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform

NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the

0 Dec 01, 2021
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
Collection of Docker images for ML/DL and video processing projects

Collection of Docker images for ML/DL and video processing projects. Overview of images Three types of images differ by tag postfix: base: Python with

OSAI 87 Nov 22, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch μ•ˆλ…•ν•˜μ„Έμš”. μ €λŠ” TUNiBμ—μ„œ λ¨Έμ‹ λŸ¬λ‹ μ—”μ§€λ‹ˆμ–΄λ‘œ 근무 쀑인 κ³ ν˜„μ›…μž…λ‹ˆλ‹€. 이 μžλ£ŒλŠ” λŒ€κ·œλͺ¨ μ–Έμ–΄λͺ¨λΈ κ°œλ°œμ— ν•„μš”ν•œ μ—¬λŸ¬κ°€μ§€ κΈ°μˆ λ“€μ„ μ†Œκ°œλ“œλ¦¬κΈ° μœ„ν•΄ λ§ˆλ ¨ν•˜μ˜€μœΌλ©° 기본적으둜

TUNiB 172 Dec 29, 2022