[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Overview

Anycost GAN

video | paper | website

Anycost GANs for Interactive Image Synthesis and Editing

Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zhu

MIT, Adobe Research, CMU

In CVPR 2021

flexible

Anycost GAN generates consistent outputs under various computational budgets.

Demo

Here, we can use the Anycost generator for interactive image editing. A full generator takes ~3s to render an image, which is too slow for editing. While with Anycost generator, we can provide a visually similar preview at 5x faster speed. After adjustment, we hit the "Finalize" button to synthesize the high-quality final output. Check here for the full demo.

Overview

Anycost generators can be run at diverse computation costs by using different channel and resolution configurations. Sub-generators achieve high output consistency compared to the full generator, providing a fast preview.

overview

With (1) Sampling-based multi-resolution training, (2) adaptive-channel training, and (3) generator-conditioned discriminator, we achieve high image quality and consistency at different resolutions and channels.

method

Results

Anycost GAN (uniform channel version) supports 4 resolutions and 4 channel ratios, producing visually consistent images with different image fidelity.

uniform

The consistency retains during image projection and editing:

Usage

Getting Started

  • Clone this repo:
git clone https://github.com/mit-han-lab/anycost-gan.git
cd anycost-gan
  • Install PyTorch 1.7 and other dependeinces.

We recommend setting up the environment using Anaconda: conda env create -f environment.yml

Introduction Notebook

We provide a jupyter notebook example to show how to use the anycost generator for image synthesis at diverse costs: notebooks/intro.ipynb.

We also provide a colab version of the notebook: . Be sure to select the GPU as the accelerator in runtime options.

Interactive Demo

We provide an interactive demo showing how we can use anycost GAN to enable interactive image editing. To run the demo:

python demo.py

You can find a video recording of the demo here.

Using Pre-trained Models

To get the pre-trained generator, encoder, and editing directions, run:

import model

pretrained_type = 'generator'  # choosing from ['generator', 'encoder', 'boundary']
config_name = 'anycost-ffhq-config-f'  # replace the config name for other models
model.get_pretrained(pretrained_type, config=config_name)

We also provide the face attribute classifier (which is general for different generators) for computing the editing directions. You can get it by running:

model.get_pretrained('attribute-predictor')

The attribute classifier takes in the face images in FFHQ format.

After loading the Anycost generator, we can run it at a wide range of computational costs. For example:

from model.dynamic_channel import set_uniform_channel_ratio, reset_generator

g = model.get_pretrained('generator', config='anycost-ffhq-config-f')  # anycost uniform
set_uniform_channel_ratio(g, 0.5)  # set channel
g.target_res = 512  # set resolution
out, _ = g(...)  # generate image
reset_generator(g)  # restore the generator

For detailed usage and flexible-channel anycost generator, please refer to notebooks/intro.ipynb.

Model Zoo

Currently, we provide the following pre-trained generators, encoders, and editing directions. We will add more in the future.

For Anycost generators, by default, we refer to the uniform setting.

config name generator encoder edit direction
anycost-ffhq-config-f ✔️ ✔️ ✔️
anycost-ffhq-config-f-flexible ✔️ ✔️ ✔️
anycost-car-config-f ✔️
stylegan2-ffhq-config-f ✔️ ✔️ ✔️

stylegan2-ffhq-config-f refers to the official StyleGAN2 generator converted from the repo.

Datasets

We prepare the FFHQ, CelebA-HQ, and LSUN Car datasets into a directory of images, so that it can be easily used with ImageFolder from torchvision. The dataset layout looks like:

├── PATH_TO_DATASET
│   ├── images
│   │   ├── 00000.png
│   │   ├── 00001.png
│   │   ├── ...

Due to the copyright issue, you need to download the dataset from official site and process them accordingly.

Evaluation

We provide the code to evaluate some metrics presented in the paper. Some of the code is written with horovod to support distributed evaluation and reduce the cost of inter-GPU communication, which greatly improves the speed. Check its website for a proper installation.

Fre ́chet Inception Distance (FID)

Before evaluating the FIDs, you need to compute the inception features of the real images using scripts like:

python tools/calc_inception.py \
    --resolution 1024 --batch_size 64 -j 16 --n_sample 50000 \
    --save_name assets/inceptions/inception_ffhq_res1024_50k.pkl \
    PATH_TO_FFHQ

or you can download the pre-computed inceptions from here and put it under assets/inceptions.

Then, you can evaluate the FIDs by running:

horovodrun -np N_GPU \
    python metrics/fid.py \
    --config anycost-ffhq-config-f \
    --batch_size 16 --n_sample 50000 \
    --inception assets/inceptions/inception_ffhq_res1024_50k.pkl
    # --channel_ratio 0.5 --target_res 512  # optionally using a smaller resolution/channel

Perceptual Path Lenght (PPL)

Similary, evaluting the PPL with:

horovodrun -np N_GPU \
    python metrics/ppl.py \
    --config anycost-ffhq-config-f

Attribute Consistency

Evaluating the attribute consistency by running:

horovodrun -np N_GPU \
    python metrics/attribute_consistency.py \
    --config anycost-ffhq-config-f \
    --channel_ratio 0.5 --target_res 512  # config for the sub-generator; necessary

Encoder Evaluation

To evaluate the performance of the encoder, run:

python metrics/eval_encoder.py \
    --config anycost-ffhq-config-f \
    --data_path PATH_TO_CELEBA_HQ

Training

The training code will be updated shortly.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{lin2021anycost,
  author    = {Lin, Ji and Zhang, Richard and Ganz, Frieder and Han, Song and Zhu, Jun-Yan},
  title     = {Anycost GANs for Interactive Image Synthesis and Editing},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year      = {2021},
}

Related Projects

GAN Compression | Once for All | iGAN | StyleGAN2

Acknowledgement

We thank Taesung Park, Zhixin Shu, Muyang Li, and Han Cai for the helpful discussion. Part of the work is supported by NSF CAREER Award #1943349, Adobe, Naver Corporation, and MIT-IBM Watson AI Lab.

The codebase is build upon a PyTorch implementation of StyleGAN2: rosinality/stylegan2-pytorch. For editing direction extraction, we refer to InterFaceGAN.

Owner
MIT HAN Lab
Accelerating Deep Learning Computing
MIT HAN Lab
NEG loss implemented in pytorch

Pytorch Negative Sampling Loss Negative Sampling Loss implemented in PyTorch. Usage neg_loss = NEG_loss(num_classes, embedding_size) optimizer =

Daniil Gavrilov 123 Sep 13, 2022
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022