Visualizer for neural network, deep learning, and machine learning models

Overview

Netron is a viewer for neural network, deep learning and machine learning models.

Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), TensorFlow Lite (.tflite), Caffe (.caffemodel, .prototxt), Darknet (.cfg), Core ML (.mlmodel), MNN (.mnn), MXNet (.model, -symbol.json), ncnn (.param), PaddlePaddle (.zip, __model__), Caffe2 (predict_net.pb), Barracuda (.nn), Tengine (.tmfile), TNN (.tnnproto), RKNN (.rknn), MindSpore Lite (.ms), UFF (.uff).

Netron has experimental support for TensorFlow (.pb, .meta, .pbtxt, .ckpt, .index), PyTorch (.pt, .pth), TorchScript (.pt, .pth), OpenVINO (.xml), Torch (.t7), Arm NN (.armnn), BigDL (.bigdl, .model), Chainer (.npz, .h5), CNTK (.model, .cntk), Deeplearning4j (.zip), MediaPipe (.pbtxt), ML.NET (.zip), scikit-learn (.pkl), TensorFlow.js (model.json, .pb).

Install

macOS: Download the .dmg file or run brew install netron

Linux: Download the .AppImage file or run snap install netron

Windows: Download the .exe installer or run winget install netron

Browser: Start the browser version.

Python Server: Run pip install netron and netron [FILE] or netron.start('[FILE]').

Models

Sample model files to download or open using the browser version:

Comments
  • Windows app not closing properly

    Windows app not closing properly

    After the latest update, Netron remains open taking up memory and CPU after closing the program. I must close it through task manager each time. I am on Windows 10

    no repro 
    opened by idenc 22
  • TorchScript: ValueError: not enough values to unpack

    TorchScript: ValueError: not enough values to unpack

    • Netron app and version: web app 5.5.9?
    • OS and browser version: Manjaro GNOME on firefox 97.0.1

    Steps to Reproduce:

    1. use torch.broadcast_tensors
    2. export with torch.trace(...).save()
    3. open in netron.app

    I have also gotten a Unsupported function 'torch.broadcast_tensors', but have been unable to reproduce it due to this current error. Most likely, the fix for the following repro will cover two bugs.

    Please attach or link model files to reproduce the issue if necessary.

    image

    Repro:

    import torch
    
    class Test(torch.nn.Module):
        def forward(self, a, b):
            a, b = torch.broadcast_tensors(a, b)
            assert a.shape == b.shape == (3, 5)
            return a + b
    
    torch.jit.trace(
        Test(),
        (torch.ones(3, 1), torch.ones(1, 5)),
    ).save("foobar.pt")
    

    Zipped foobar.pt: foobar.zip

    help wanted bug 
    opened by pbsds 15
  • OpenVINO support

    OpenVINO support

    • [x] 1. Opening rm_lstm4f.xml results in TypeError (#192)
    • [x] 2. dot files are not opened any more - need to fix it (#192)
    • [x] 3. add preflight check for invalid xml and dot content
    • [x] 6. Add test files to ./test/models.json (#195) (#211)
    • [x] 9. Add support for the version 3 of IR (#196)
    • [x] 10. Category color support (#203)
    • [x] 11. -metadata.json for coloring, documentation and attribute default filtering (#203).
    • [x] 5. Filter attribute defaults based on -metadata.json to show fewer attributes in the graph
    • [ ] 7. Show weight tensors
    • [x] 8. Graph inputs and outputs should be exposed as Graph.inputs and Graph.outputs
    • [x] 12. Move to DOMParser
    • [x] 13. Remove dot support
    feature 
    opened by lutzroeder 15
  • RangeError: Maximum call stack size exceeded

    RangeError: Maximum call stack size exceeded

    • Netron app and version: 4.4.8 App and Browser
    • OS and browser version: Windows 10 + Chrome Version 84.0.4147.135

    Steps to Reproduce:

    EfficientDet-d0.zip

    Please attach or link model files to reproduce the issue if necessary.

    help wanted no repro bug 
    opened by ryusaeba 14
  • Debugging Tensorflow Lite Model

    Debugging Tensorflow Lite Model

    Hi there,

    First off, just wanted to say thanks for creating such a great tool - Netron is very useful.

    I'm having an issue that likely stems from Tensorflow, rather than from Netron, but thought you might have some insights. In my flow, I use TF 1.15 to go from .ckpt --> frozen .pb --> .tflite. Normally it works reasonably smoothly, but a recent run shows an issue with the .tflite file: it is created without errors, it runs, but it performs poorly. Opening it with Netron shows that the activation functions (relu6 in this case) have been removed for every layer. Opening the equivalent .pb file in Netron shows the relu6 functions are present.

    Have you seen any cases in which Netron struggled with a TF Lite model (perhaps it can open, but isn't displaying correctly)? Also, how did you figure out the format for .tflite files (perhaps knowing this would allow me to debug it more deeply)?

    Thanks in advance.

    no repro 
    opened by mm7721 12
  • add armnn serialized format support

    add armnn serialized format support

    here's patch to support armnn format. (experimental)

    armnn-schema.js is compiled from ArmnnSchema.fbs included in armNN serailizer.

    see also:

    armnn: https://github.com/ARM-software/armnn

    As mensioned in #363, I will check items in below:

    • [x] Add sample files to test/models.json and run node test/test.js armnn
    • [x] Add tools/armnn script and sync, schema to automate regenerating armnn-schema.js
    • [x] Add tools/armnn script to run as part of ./Makefile
    • [x] Run make lint
    opened by Tee0125 12
  • TorchScript: Argument names to match runtime

    TorchScript: Argument names to match runtime

    Hi, there is some questions about node's name which in pt model saved by TorchScript. I use netron to view my pt model exported by torch.jit.save(),but the node's name doesn't match with it's real name resolved by TorchScript interface. It looks like the names in pt are arranged numerically from smallest to largest,but this is clearly not the case when they are parsed from TorchScript's interface. I wonder how this kind of situation can be solved, thanks a lot !! Looking forward to your reply.

    help wanted 
    opened by daodaoawaker 11
  • Support torch.fx IR visualization using netron

    Support torch.fx IR visualization using netron

    torch.fx is a library in PyTorch 1.8 that allows python-python model transformations. It works by symbolically tracing the PyTorch model into a graph (fx.GraphModule), which can be transformed and finally exported back to code, or used as a nn.Module directly. Currently there is no mechanism to import the graph IR into netron. An indirect path is to export to ONNX to visualize, which is not as useful if debugging transformations that potentially break ONNX exportability. It seems valuable to visualize the traced graph directly in netron.

    feature help wanted no repro 
    opened by sjain-stanford 11
  • TorchScript unsupported functions in after update

    TorchScript unsupported functions in after update

    I have a lot of basic model files saved in TorchScript and they were able to be opened weeks ago. However I cannot many of them after update Netron to v3.9.1. Many common functions are not supported not, e.g. torch.constant_pad_nd, torch.bmm, torch.avg_pool3d.

    opened by lujq96 11
  • OpenVINO IR v10 LSTM support

    OpenVINO IR v10 LSTM support

    • Netron app and version: 4.4.4
    • OS and browser version: Windows 10 64bit

    Steps to Reproduce:

    1. Open OpenVINO IR XML file in netron

    Please attach or link model files to reproduce the issue if necessary.

    I cannot share the proprietary model that shows dozens of disconnected nodes, but the one linked below does show disconnected subgraphs after conversion to OpenVINO IR. Note that the IR generated using the --generate_deprecated_IR_V7 option displays correctly.

    https://github.com/ARM-software/ML-KWS-for-MCU/blob/master/Pretrained_models/Basic_LSTM/Basic_LSTM_S.pb

    Convert using:

    python 'C:\Program Files (x86)\IntelSWTools\openvino\deployment_tools\model_optimizer\mo.py' --input_model .\Basic_LSTM_S.pb --input=Reshape:0 --input_shape=[1,490] --output=Output-Layer/add

    This results in the following disconnected graph display:

    image

    no repro external bug 
    opened by mdeisher 10
  • Full support for scikit-learn (joblib)

    Full support for scikit-learn (joblib)

    For recoverable estimator persistence scikit-learn recommends to use joblib (instead of pickle). Sidenote: It is possible to export trained models into ONNX or PMML but the estimators are not recoverable. For more info refer to here.

    bug 
    opened by fkromer 9
  • Export full size image

    Export full size image

    I have onnx file successfully exported from mmsegmentation (swin-transformer), huge model (975.4) MB, I managed to open it in netron, however when I try to export it and preview in full size its blured.

    Any way I can fix it ? Thanks

    no repro bug 
    opened by adrianodac 0
  • TorchScript: torch.jit.mobile.serialization support

    TorchScript: torch.jit.mobile.serialization support

    Export PyTorch model to FlatBuffers file:

    import torch
    import torchvision
    model = torchvision.models.resnet34(weights=torchvision.models.ResNet34_Weights.DEFAULT)
    torch.jit.save_jit_module_to_flatbuffer(torch.jit.script(model), 'resnet34.ff')
    

    Sample files: scriptmodule.ff.zip squeezenet1_1_traced.ff.zip

    feature 
    opened by lutzroeder 0
  • MegEngine: fix some bugs

    MegEngine: fix some bugs

    fix some bugs of megengine C++ model (.mge) visualization:

    1. show the shape of the middle tensor;
    2. fix scope matching model identifier (mgv2) due to possible leading information;

    please help review, thanks~

    opened by Ysllllll 0
  • TorchScript server

    TorchScript server

    import torch
    import torchvision
    import torch.utils.tensorboard
    model = torchvision.models.detection.fasterrcnn_resnet50_fpn()
    script = torch.jit.script(model)
    script.save('fasterrcnn_resnet50_fpn.pt')
    with torch.utils.tensorboard.SummaryWriter('log') as writer:
        writer.add_graph(script, ())
    

    fasterrcnn_resnet50_fpn.pt.zip

    feature 
    opened by lutzroeder 0
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 76 Nov 23, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022