SOTA model in CIFAR10

Overview

A PyTorch Implementation of CIFAR Tricks

调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。

0. Requirements

  • Python 3.6+
  • torch=1.8.0+cu111
  • torchvision+0.9.0+cu111
  • tqdm=4.26.0
  • PyYAML=6.0

1. Implements

1.1 Tricks

  • Warmup
  • Cosine LR Decay
  • SAM
  • Label Smooth
  • KD
  • Adabound
  • Xavier Kaiming init
  • lr finder

1.2 Augmentation

  • Auto Augmentation
  • Cutout
  • Mixup
  • RICAP
  • Random Erase
  • ShakeDrop

2. Training

2.1 CIFAR-10训练示例

WideResNet28-10 baseline on CIFAR-10:

python train.py --dataset cifar10

WideResNet28-10 +RICAP on CIFAR-10:

python train.py --dataset cifar10 --ricap True

WideResNet28-10 +Random Erasing on CIFAR-10:

python train.py --dataset cifar10 --random-erase True

WideResNet28-10 +Mixup on CIFAR-10:

python train.py --dataset cifar10 --mixup True

3. Results

3.1 原pytorch-ricap的结果

Model Error rate Loss Error rate (paper)
WideResNet28-10 baseline 3.82(96.18) 0.158 3.89
WideResNet28-10 +RICAP 2.82(97.18) 0.141 2.85
WideResNet28-10 +Random Erasing 3.18(96.82) 0.114 4.65
WideResNet28-10 +Mixup 3.02(96.98) 0.158 3.02

3.2 Reimplementation结果

Model Error rate Loss Error rate (paper)
WideResNet28-10 baseline 3.78(96.22) 3.89
WideResNet28-10 +RICAP 2.81(97.19) 2.85
WideResNet28-10 +Random Erasing 3.03(96.97) 0.113 4.65
WideResNet28-10 +Mixup 2.93(97.07) 0.158 3.02

3.3 Half data快速训练验证各网络结构

reimplementation models(no augmentation, half data,epoch200,bs128)

Model Error rate Loss
lenet(cpu爆炸) (70.76)
wideresnet 3.78(96.22)
resnet20 (89.72)
senet (92.34)
resnet18 (92.08)
resnet34 (92.48)
resnet50 (91.72)
regnet (92.58)
nasnet out of mem
shake_resnet26_2x32d (93.06)
shake_resnet26_2x64d (94.14)
densenet (92.06)
dla (92.58)
googlenet (91.90) 0.2675
efficientnetb0(利用率低且慢) (86.82) 0.5024
mobilenet(利用率低) (89.18)
mobilenetv2 (91.06)
pnasnet (90.44)
preact_resnet (90.76)
resnext (92.30)
vgg(cpugpu利用率都高) (88.38)
inceptionv3 (91.84)
inceptionv4 (91.10)
inception_resnet_v2 (83.46)
rir (92.34) 0.3932
squeezenet(CPU利用率高) (89.16) 0.4311
stochastic_depth_resnet18 (90.22)
xception
dpn (92.06) 0.3002
ge_resnext29_8x64d (93.86) 巨慢

3.4 测试cpu gpu影响

TEST: scale/kernel ToyNet

修改网络的卷积层深度,并进行训练,可以得到以下结论:

结论:lenet这种卷积量比较少,只有两层的,cpu利用率高,gpu利用率低。在这个基础上增加深度,用vgg那种直筒方式增加深度,发现深度越深,cpu利用率越低,gpu利用率越高。

修改训练过程的batch size,可以得到以下结论:

结论:bs会影响收敛效果。

3.5 StepLR优化下测试cutout和mixup

architecture epoch cutout mixup C10 test acc (%)
shake_resnet26_2x64d 200 96.33
shake_resnet26_2x64d 200 96.99
shake_resnet26_2x64d 200 96.60
shake_resnet26_2x64d 200 96.46

3.6 测试SAM,ASAM,Cosine,LabelSmooth

architecture epoch SAM ASAM Cosine LR Decay LabelSmooth C10 test acc (%)
shake_resnet26_2x64d 200 96.51
shake_resnet26_2x64d 200 96.80
shake_resnet26_2x64d 200 96.61
shake_resnet26_2x64d 200 96.57

PS:其他库在加长训练过程(epoch=1800)情况下可以实现 shake_resnet26_2x64d achieved 97.71% test accuracy with cutout and mixup!!

3.7 测试cosine lr + shake

architecture epoch cutout mixup C10 test acc (%)
shake_resnet26_2x64d 300 96.66
shake_resnet26_2x64d 300 97.21
shake_resnet26_2x64d 300 96.90
shake_resnet26_2x64d 300 96.73

1800 epoch CIFAR ZOO中结果,由于耗时过久,未进行复现。

architecture epoch cutout mixup C10 test acc (%)
shake_resnet26_2x64d 1800 96.94(cifar zoo)
shake_resnet26_2x64d 1800 97.20(cifar zoo)
shake_resnet26_2x64d 1800 97.42(cifar zoo)
shake_resnet26_2x64d 1800 97.71(cifar zoo)

3.8 Divide and Co-training方案研究

  • lr:
    • warmup (20 epoch)
    • cosine lr decay
    • lr=0.1
    • total epoch(300 epoch)
  • bs=128
  • aug:
    • Random Crop and resize
    • Random left-right flipping
    • AutoAugment
    • Normalization
    • Random Erasing
    • Mixup
  • weight decay=5e-4 (bias and bn undecayed)
  • kaiming weight init
  • optimizer: nesterov

复现:((v100:gpu1) 4min*300/60=20h) top1: 97.59% 本项目目前最高值。

python train.py --model 'pyramidnet272' \
                --name 'divide-co-train' \
                --autoaugmentation True \ 
                --random-erase True \
                --mixup True \
                --epochs 300 \
                --sched 'warmcosine' \
                --optims 'nesterov' \
                --bs 128 \
                --root '/home/dpj/project/data'

3.9 测试多种数据增强

architecture epoch cutout mixup autoaugment random-erase C10 test acc (%)
shake_resnet26_2x64d 200 96.42
shake_resnet26_2x64d 200 96.49
shake_resnet26_2x64d 200 96.17
shake_resnet26_2x64d 200 96.25
shake_resnet26_2x64d 200 96.20
shake_resnet26_2x64d 200 95.82
shake_resnet26_2x64d 200 96.02
shake_resnet26_2x64d 200 96.00
shake_resnet26_2x64d 200 95.83
shake_resnet26_2x64d 200 95.89
shake_resnet26_2x64d 200 96.25
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_orgin' --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_c' --cutout True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_m' --mixup True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_a' --autoaugmentation True  --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_r' --random-erase True  --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_cm'  --cutout True --mixup True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_ca' --cutout True --autoaugmentation True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_cr' --cutout True --random-erase True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_ma' --mixup True --autoaugmentation True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_mr' --mixup True --random-erase True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_ar' --autoaugmentation True --random-erase True  --bs 64

4. Reference

[1] https://github.com/BIGBALLON/CIFAR-ZOO

[2] https://github.com/pprp/MutableNAS

[3] https://github.com/clovaai/CutMix-PyTorch

[4] https://github.com/4uiiurz1/pytorch-ricap

[5] https://github.com/NUDTNASLab/pytorch-image-models

[6] https://github.com/facebookresearch/LaMCTS

[7] https://github.com/Alibaba-MIIL/ImageNet21K

Owner
PJDong
Computer vision learner, deep learner
PJDong
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
Haze Removal can remove slight to extreme cases of haze affecting an image

Haze Removal can remove slight to extreme cases of haze affecting an image. Its most typical use is for landscape photography where the haze causes low contrast and low saturation, but it can also be

Grace Ugochi Nneji 3 Feb 15, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

haifeng xia 32 Oct 26, 2022
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022