Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Overview

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding

by Qiaole Dong*, Chenjie Cao*, Yanwei Fu

Paper and Supplemental Material (arXiv)

LICENSE

Pipeline

Click to expand

The overview of our ZITS. At first, the TSR model is used to restore structures with low resolutions. Then the simple CNN based upsampler is leveraged to upsample edge and line maps. Moreover, the upsampled sketch space is encoded and added to the FTR through ZeroRA to restore the textures.

TO DO

We have updated weights of TSR!

Our project page is available at https://dqiaole.github.io/ZITS_inpainting/.

  • Releasing inference codes.
  • Releasing pre-trained moodel.
  • Releasing training codes.

Preparation

Click to expand
  1. Preparing the environment:

    as there are some bugs when using GP loss with DDP (link), we strongly recommend installing Apex without CUDA extensions via torch1.9.0 for the multi-gpu training

    conda create -n train_env python=3.6
    conda activate train_env
    pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
    pip install -r requirement.txt
    git clone https://github.com/NVIDIA/apex
    cd apex
    pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" ./
    
  2. For training, MST provide irregular and segmentation masks (download) with different masking rates. And you should define the mask file list before the training as in MST.

  3. Download the pretrained masked wireframe detection model to the './ckpt' fold: LSM-HAWP (MST ICCV2021 retrained from HAWP CVPR2020).

  4. Prepare the wireframes:

    as the MST train the LSM-HAWP in Pytorch 1.3.1 and it causes problem (link) when tested in Pytorch 1.9, we recommand to inference the lines(wireframes) with torch==1.3.1. If the line detection is not based on torch1.3.1, the performance may drop a little.

    conda create -n wireframes_inference_env python=3.6
    conda activate wireframes_inference_env
    pip install torch==1.3.1 torchvision==0.4.2
    pip install -r requirement.txt
    

    then extract wireframes with following code

    python lsm_hawp_inference.py --ckpt_path <best_lsm_hawp.pth> --input_path <input image path> --output_path <output image path> --gpu_ids '0'
    
  5. If you need to train the model, please download the pretrained models for perceptual loss, provided by LaMa:

    mkdir -p ade20k/ade20k-resnet50dilated-ppm_deepsup/
    wget -P ade20k/ade20k-resnet50dilated-ppm_deepsup/ http://sceneparsing.csail.mit.edu/model/pytorch/ade20k-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth
    

Eval

Click to expand

Download pretrained models on Places2 here.

Link for BaiduDrive, password:qnm5

Batch Test

For batch test, you need to complete steps 3 and 4 above.

Put the pretrained models to the './ckpt' fold. Then modify the config file according to you image, mask and wireframes path.

Test on 256 images:

conda activate train_env
python FTR_inference.py --path ./ckpt/zits_places2 --config_file ./config_list/config_ZITS_places2.yml --GPU_ids '0'

Test on 512 images:

conda activate train_env
python FTR_inference.py --path ./ckpt/zits_places2_hr --config_file ./config_list/config_ZITS_HR_places2.yml --GPU_ids '0'

Single Image Test

Note: For single image test, environment 'wireframes_inference_env' in step 4 is recommended for a better line detection. This code only supports squared images (or they will be center cropped).

conda activate wireframes_inference_env
python single_image_test.py --path <ckpt_path> --config_file <config_path> \
 --GPU_ids '0' --img_path ./image.png --mask_path ./mask.png --save_path ./

Training

Click to expand

⚠️ Warning: The training codes is not fully tested yet after refactoring

Training TSR

python TSR_train.py --name places2_continous_edgeline --data_path [training_data_path] \
 --train_line_path [training_wireframes_path] \
 --mask_path ['irregular_mask_list.txt', 'coco_mask_list.txt'] \
 --train_epoch 12 --validation_path [validation_data_path] \
 --val_line_path [validation_wireframes_path] \
 --valid_mask_path [validation_mask] --nodes 1 --gpus 1 --GPU_ids '0' --AMP
python TSR_train.py --name places2_continous_edgeline --data_path [training_data_path] \
 --train_line_path [training_wireframes_path] \
 --mask_path ['irregular_mask_list.txt', 'coco_mask_list.txt'] \
 --train_epoch 15 --validation_path [validation_data_path] \
 --val_line_path [validation_wireframes_path] \
 --valid_mask_path [validation_mask] --nodes 1 --gpus 1 --GPU_ids '0' --AMP --MaP

Train SSU

We recommend to use the pretrained SSU. You can also train your SSU refered to https://github.com/ewrfcas/StructureUpsampling.

Training LaMa First

python FTR_train.py --nodes 1 --gpus 1 --GPU_ids '0' --path ./ckpt/lama_places2 \
--config_file ./config_list/config_LAMA.yml --lama

Training FTR

256:

python FTR_train.py --nodes 1 --gpus 2 --GPU_ids '0,1' --path ./ckpt/places2 \
--config_file ./config_list/config_ZITS_places2.yml --DDP

256~512:

python FTR_train.py --nodes 1 --gpus 2 --GPU_ids '0,1' --path ./ckpt/places2_HR \
--config_file ./config_list/config_ZITS_HR_places2.yml --DDP

More 1K Results

Click to expand

Acknowledgments

Cite

If you found our program helpful, please consider citing:

@inproceedings{dong2022incremental,
      title={Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding}, 
      author={Qiaole Dong and Chenjie Cao and Yanwei Fu},
      booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
      year={2022}
}
Owner
Qiaole Dong
Qiaole Dong
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
diablo2 resurrected loot filter

Only For Chinese and Traditional Chinese The filter only for Chinese and Traditional Chinese, i didn't change it for other language.Maybe you could mo

elmagnifico 249 Dec 04, 2022
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Ihar 7 May 10, 2022
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022