Cross-view Transformers for real-time Map-view Semantic Segmentation (CVPR 2022 Oral)

Overview

Cross View Transformers


This repository contains the source code and data for our paper:

Cross-view Transformers for real-time Map-view Semantic Segmentation
Brady Zhou, Philipp Krähenbühl
CVPR 2022

Demos


Map-view Segmentation: The model uses multi-view images to produce a map-view segmentation at 45 FPS

Map Making: With vehicle pose, we can construct a map by fusing model predictions over time

Cross-view Attention: For a given map-view location, we show which image patches are being attended to

Installation

# Clone repo
git clone https://github.com/bradyz/cross_view_transformers.git

cd cross_view_transformers

# Setup conda environment
conda create -y --name cvt python=3.8

conda activate cvt
conda install -y pytorch torchvision cudatoolkit=11.3 -c pytorch

# Install dependencies
pip install -r requirements.txt
pip install -e .

Data


Documentation:


Download the original datasets and our generated map-view labels

Dataset Labels
nuScenes keyframes + map expansion (60 GB) cvt_labels_nuscenes.tar.gz (361 MB)
Argoverse 1.1 3D tracking coming soon™

The structure of the extracted data should look like the following

/datasets/
├─ nuscenes/
│  ├─ v1.0-trainval/
│  ├─ v1.0-mini/
│  ├─ samples/
│  ├─ sweeps/
│  └─ maps/
│     ├─ basemap/
│     └─ expansion/
└─ cvt_labels_nuscenes/
   ├─ scene-0001/
   ├─ scene-0001.json
   ├─ ...
   ├─ scene-1000/
   └─ scene-1000.json

When everything is setup correctly, check out the dataset with

python3 scripts/view_data.py \
  data=nuscenes \
  data.dataset_dir=/media/datasets/nuscenes \
  data.labels_dir=/media/datasets/cvt_labels_nuscenes \
  data.version=v1.0-mini \
  visualization=nuscenes_viz \
  +split=val

Training

             

An average job of 50k training iterations takes ~8 hours.
Our models were trained using 4 GPU jobs, but also can be trained on single GPU.

To train a model,

python3 scripts/train.py \
  +experiment=cvt_nuscenes_vehicle
  data.dataset_dir=/media/datasets/nuscenes \
  data.labels_dir=/media/datasets/cvt_labels_nuscenes

For more information, see

  • config/config.yaml - base config
  • config/model/cvt.yaml - model architecture
  • config/experiment/cvt_nuscenes_vehicle.yaml - additional overrides

Additional Information

Awesome Related Repos

License

This project is released under the MIT license

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{zhou2022cross,
    title={Cross-view Transformers for real-time Map-view Semantic Segmentation},
    author={Zhou, Brady and Kr{\"a}henb{\"u}hl, Philipp},
    booktitle={CVPR},
    year={2022}
}
Owner
Brady Zhou
hey
Brady Zhou
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
Advancing mathematics by guiding human intuition with AI

Advancing mathematics by guiding human intuition with AI This repo contains two colab notebooks which accompany the paper, available online at https:/

DeepMind 315 Dec 26, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

Soohwan Kim 565 Jan 04, 2023
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022