Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

Related tags

Deep LearningRawVSR
Overview

RawVSR

This repo contains the official codes for our paper:

Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

Xiaohong Liu, Kangdi Shi, Zhe Wang, Jun Chen

plot

Accepted in IEEE Transactions on Image Processing

[Paper Download] [Video]


Dependencies and Installation

  1. Clone repo

    $ git clone https://github.com/proteus1991/RawVSR.git
  2. Install dependent packages

    $ cd RawVSR
    $ pip install -r requirements.txt
  3. Setup the Deformable Convolution Network (DCN)

    Since our RawVSR use the DCN for feature alignment extracted from different video frames, we follow the setup in EDVR, where more details can be found.

    $ python setup.py develop

    Note that the deform_conv_cuda.cpp and deform_conv_cuda_kernel.cu have been modified to solve compile errors in PyTorch >= 1.7.0. If your PyTorch version < 1.7.0, you may need to download the original setup code.

Introduction

  • train.py and test.py are the entry codes for training and testing the RawVSR.
  • ./data/ contains the codes for data loading.
  • ./dataset/ contains the corresponding video sequences.
  • ./dcn/ is the dependencies of DCN.
  • ./models/ contains the codes to define the network.
  • ./utils/ includes the utilities.
  • ./weight_checkpoint/ saves checkpoints and the best network weight.

Raw Video Dataset (RawVD)

Since we are not aware of the existence of publicly available raw video datasets, to train our RawVSR, a raw video dataset dubbled as RawVD is built. plot

In this dataset, we provide the ground-truth sRGB frames in folder 1080p_gt_rgb. Low-resolution (LR) Raw frames are in folder 1080p_lr_d_raw_2 and 1080p_lr_d_raw_4 in terms of different scale ratios. Their corresponding sRGB frames are in folder 1080p_lr_d_rgb_2 and 1080p_lr_d_rgb_4, where d in folder name stands for the degradations including defocus blurring and heteroscedastic Gaussian noise. We also released the original raw videos in Magic Lantern Video (MLV) format. The corresponding software to play it can be found here. Details can be found in Section 3 of our paper.

Quick Start

1. Testing

Make sure all dependencies are successfully installed.

Run test.py with --scale_ratio and save_image tags.

$ python test.py --scale_ratio 4 --save_image

The help of --scale_ratio and save_image tags is shown by running:

$ python test.py -h

If everything goes well, the following messages will appear in your bash:

--- Hyper-parameter default settings ---
train settings:
 {'dataroot_GT': '/media/lxh/SSD_DATA/raw_test/gt/1080p/1080p_gt_rgb', 'dataroot_LQ': '/media/lxh/SSD_DATA/raw_test/w_d/1080p/1080p_lr_d_raw_4', 'lr': 0.0002, 'num_epochs': 100, 'N_frames': 7, 'n_workers': 12, 'batch_size': 24, 'GT_size': 256, 'LQ_size': 64, 'scale': 4, 'phase': 'train'}
val settings:
 {'dataroot_GT': '/media/lxh/SSD_DATA/raw_test/gt/1080p/1080p_gt_rgb', 'dataroot_LQ': '/media/lxh/SSD_DATA/raw_test/w_d/1080p/1080p_lr_d_raw_4', 'N_frames': 7, 'n_workers': 12, 'batch_size': 2, 'phase': 'val', 'save_image': True}
network settings:
 {'nf': 64, 'nframes': 7, 'groups': 8, 'back_RBs': 4}
dataset settings:
 {'dataset_name': 'RawVD'}
--- testing results ---
store: 29.04dB
painting: 29.02dB
train: 28.59dB
city: 29.08dB
tree: 28.06dB
avg_psnr: 28.76dB
--- end ---

The RawVSR is tested on our elaborately-collected RawVD. Here the PSNR results should be the same as Table 1 in our paper.

2. Training

Run train.py without --save_image tag to reduce the training time.

$ python train.py --scale_ratio 4

If you want to change the default hyper-parameters (e.g., modifying the batch_size), simply go config.py. All network and training/testing settings are stored there.

Acknowledgement

Some codes (e.g., DCN) are borrowed from EDVR with modification.

Cite

If you use this code, please kindly cite

@article{liu2020exploit,
  title={Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference},
  author={Liu, Xiaohong and Shi, Kangdi and Wang, Zhe and Chen, Jun},
  journal={arXiv preprint arXiv:2008.10710},
  year={2020}
}

Contact

Should you have any question about this code, please open a new issue directly. For any other questions, you might contact me in email: [email protected].

Owner
Xiaohong Liu
Xiaohong Liu
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022