Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

Related tags

Deep LearningRawVSR
Overview

RawVSR

This repo contains the official codes for our paper:

Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

Xiaohong Liu, Kangdi Shi, Zhe Wang, Jun Chen

plot

Accepted in IEEE Transactions on Image Processing

[Paper Download] [Video]


Dependencies and Installation

  1. Clone repo

    $ git clone https://github.com/proteus1991/RawVSR.git
  2. Install dependent packages

    $ cd RawVSR
    $ pip install -r requirements.txt
  3. Setup the Deformable Convolution Network (DCN)

    Since our RawVSR use the DCN for feature alignment extracted from different video frames, we follow the setup in EDVR, where more details can be found.

    $ python setup.py develop

    Note that the deform_conv_cuda.cpp and deform_conv_cuda_kernel.cu have been modified to solve compile errors in PyTorch >= 1.7.0. If your PyTorch version < 1.7.0, you may need to download the original setup code.

Introduction

  • train.py and test.py are the entry codes for training and testing the RawVSR.
  • ./data/ contains the codes for data loading.
  • ./dataset/ contains the corresponding video sequences.
  • ./dcn/ is the dependencies of DCN.
  • ./models/ contains the codes to define the network.
  • ./utils/ includes the utilities.
  • ./weight_checkpoint/ saves checkpoints and the best network weight.

Raw Video Dataset (RawVD)

Since we are not aware of the existence of publicly available raw video datasets, to train our RawVSR, a raw video dataset dubbled as RawVD is built. plot

In this dataset, we provide the ground-truth sRGB frames in folder 1080p_gt_rgb. Low-resolution (LR) Raw frames are in folder 1080p_lr_d_raw_2 and 1080p_lr_d_raw_4 in terms of different scale ratios. Their corresponding sRGB frames are in folder 1080p_lr_d_rgb_2 and 1080p_lr_d_rgb_4, where d in folder name stands for the degradations including defocus blurring and heteroscedastic Gaussian noise. We also released the original raw videos in Magic Lantern Video (MLV) format. The corresponding software to play it can be found here. Details can be found in Section 3 of our paper.

Quick Start

1. Testing

Make sure all dependencies are successfully installed.

Run test.py with --scale_ratio and save_image tags.

$ python test.py --scale_ratio 4 --save_image

The help of --scale_ratio and save_image tags is shown by running:

$ python test.py -h

If everything goes well, the following messages will appear in your bash:

--- Hyper-parameter default settings ---
train settings:
 {'dataroot_GT': '/media/lxh/SSD_DATA/raw_test/gt/1080p/1080p_gt_rgb', 'dataroot_LQ': '/media/lxh/SSD_DATA/raw_test/w_d/1080p/1080p_lr_d_raw_4', 'lr': 0.0002, 'num_epochs': 100, 'N_frames': 7, 'n_workers': 12, 'batch_size': 24, 'GT_size': 256, 'LQ_size': 64, 'scale': 4, 'phase': 'train'}
val settings:
 {'dataroot_GT': '/media/lxh/SSD_DATA/raw_test/gt/1080p/1080p_gt_rgb', 'dataroot_LQ': '/media/lxh/SSD_DATA/raw_test/w_d/1080p/1080p_lr_d_raw_4', 'N_frames': 7, 'n_workers': 12, 'batch_size': 2, 'phase': 'val', 'save_image': True}
network settings:
 {'nf': 64, 'nframes': 7, 'groups': 8, 'back_RBs': 4}
dataset settings:
 {'dataset_name': 'RawVD'}
--- testing results ---
store: 29.04dB
painting: 29.02dB
train: 28.59dB
city: 29.08dB
tree: 28.06dB
avg_psnr: 28.76dB
--- end ---

The RawVSR is tested on our elaborately-collected RawVD. Here the PSNR results should be the same as Table 1 in our paper.

2. Training

Run train.py without --save_image tag to reduce the training time.

$ python train.py --scale_ratio 4

If you want to change the default hyper-parameters (e.g., modifying the batch_size), simply go config.py. All network and training/testing settings are stored there.

Acknowledgement

Some codes (e.g., DCN) are borrowed from EDVR with modification.

Cite

If you use this code, please kindly cite

@article{liu2020exploit,
  title={Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference},
  author={Liu, Xiaohong and Shi, Kangdi and Wang, Zhe and Chen, Jun},
  journal={arXiv preprint arXiv:2008.10710},
  year={2020}
}

Contact

Should you have any question about this code, please open a new issue directly. For any other questions, you might contact me in email: [email protected].

Owner
Xiaohong Liu
Xiaohong Liu
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
2 Jul 19, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
Official implementation of Pixel-Level Bijective Matching for Video Object Segmentation

BMVOS This is the official implementation of Pixel-Level Bijective Matching for Video Object Segmentation, to appear in WACV 2022. @article{cho2021pix

Suhwan Cho 13 Dec 14, 2022
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS - A Deep Learning Optimizer Benchmark Suite DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation

Aaron Bahde 7 May 12, 2020
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022