Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Overview

Self-attention building blocks for computer vision applications in PyTorch

Implementation of self attention mechanisms for computer vision in PyTorch with einsum and einops. Focused on computer vision self-attention modules.

Install it via pip

It would be nice to install pytorch in your enviroment, in case you don't have a GPU.

pip install self-attention-cv

Related articles

More articles are on the way.

Code Examples

Multi-head attention

import torch
from self_attention_cv import MultiHeadSelfAttention

model = MultiHeadSelfAttention(dim=64)
x = torch.rand(16, 10, 64)  # [batch, tokens, dim]
mask = torch.zeros(10, 10)  # tokens X tokens
mask[5:8, 5:8] = 1
y = model(x, mask)

Axial attention

import torch
from self_attention_cv import AxialAttentionBlock
model = AxialAttentionBlock(in_channels=256, dim=64, heads=8)
x = torch.rand(1, 256, 64, 64)  # [batch, tokens, dim, dim]
y = model(x)

Vanilla Transformer Encoder

import torch
from self_attention_cv import TransformerEncoder
model = TransformerEncoder(dim=64,blocks=6,heads=8)
x = torch.rand(16, 10, 64)  # [batch, tokens, dim]
mask = torch.zeros(10, 10)  # tokens X tokens
mask[5:8, 5:8] = 1
y = model(x,mask)

Vision Transformer with/without ResNet50 backbone for image classification

import torch
from self_attention_cv import ViT, ResNet50ViT

model1 = ResNet50ViT(img_dim=128, pretrained_resnet=False, 
                        blocks=6, num_classes=10, 
                        dim_linear_block=256, dim=256)
# or
model2 = ViT(img_dim=256, in_channels=3, patch_dim=16, num_classes=10,dim=512)
x = torch.rand(2, 3, 256, 256)
y = model2(x) # [2,10]

A re-implementation of Unet with the Vision Transformer encoder

import torch
from self_attention_cv.transunet import TransUnet
a = torch.rand(2, 3, 128, 128)
model = TransUnet(in_channels=3, img_dim=128, vit_blocks=8,
vit_dim_linear_mhsa_block=512, classes=5)
y = model(a) # [2, 5, 128, 128]

Bottleneck Attention block

import torch
from self_attention_cv.bottleneck_transformer import BottleneckBlock
inp = torch.rand(1, 512, 32, 32)
bottleneck_block = BottleneckBlock(in_channels=512, fmap_size=(32, 32), heads=4, out_channels=1024, pooling=True)
y = bottleneck_block(inp)

Position embeddings are also available

1D Positional Embeddings

import torch
from self_attention_cv.pos_embeddings import AbsPosEmb1D,RelPosEmb1D

model = AbsPosEmb1D(tokens=20, dim_head=64)
# batch heads tokens dim_head
q = torch.rand(2, 3, 20, 64)
y1 = model(q)

model = RelPosEmb1D(tokens=20, dim_head=64, heads=3)
q = torch.rand(2, 3, 20, 64)
y2 = model(q)

2D Positional Embeddings

import torch
from self_attention_cv.pos_embeddings import RelPosEmb2D
dim = 32  # spatial dim of the feat map
model = RelPosEmb2D(
    feat_map_size=(dim, dim),
    dim_head=128)

q = torch.rand(2, 4, dim*dim, 128)
y = model(q)

References

  1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.
  2. Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., & Chen, L. C. (2020, August). Axial-deeplab: Stand-alone axial-attention for panoptic segmentation. In European Conference on Computer Vision (pp. 108-126). Springer, Cham.
  3. Srinivas, A., Lin, T. Y., Parmar, N., Shlens, J., Abbeel, P., & Vaswani, A. (2021). Bottleneck Transformers for Visual Recognition. arXiv preprint arXiv:2101.11605.
  4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
Comments
  • Thank you very much for the code. But when I run test_TransUnet.py , It starts reporting errors. Why is that? Could you please help me solve it? Thank you

    Thank you very much for the code. But when I run test_TransUnet.py , It starts reporting errors. Why is that? Could you please help me solve it? Thank you

    Thank you very much for the code. But when I run test_TransUnet.py , It starts reporting errors. Why is that?I `Traceback (most recent call last): File "self-attention-cv/tests/test_TransUnet.py", line 14, in test_TransUnet() File "/self-attention-cv/tests/test_TransUnet.py", line 11, in test_TransUnet y = model(a) File "C:\Users\dell.conda\envs\myenv\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "self-attention-cv\self_attention_cv\transunet\trans_unet.py", line 88, in forward y = self.project_patches_back(y) File "C:\Users\dell.conda\envs\myenv\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "C:\Users\dell.conda\envs\myenv\lib\site-packages\torch\nn\modules\linear.py", line 93, in forward return F.linear(input, self.weight, self.bias) File "C:\Users\dell.conda\envs\myenv\lib\site-packages\torch\nn\functional.py", line 1692, in linear output = input.matmul(weight.t()) RuntimeError: mat1 dim 1 must match mat2 dim 0

    Process finished with exit code 1 ` Could you please help me solve it? Thank you.

    opened by yezhengjie 7
  • TransUNet - Why is the patch_dim set to 1?

    TransUNet - Why is the patch_dim set to 1?

    Hi,

    Can you please explain why is the patch_dim set to 1 in TransUNet class? Thank you in advance!

    https://github.com/The-AI-Summer/self-attention-cv/blob/8280009366b633921342db6cab08da17b46fdf1c/self_attention_cv/transunet/trans_unet.py#L54

    opened by dsitnik 7
  • Question: Sliding Window Module for Transformer3dSeg Object

    Question: Sliding Window Module for Transformer3dSeg Object

    I was wondering whether or not you've implemented an example using the network in a 3d medical segmentation task and/or use case? If this network only exports the center slice of a patch then we would need a wrapper function to iterate through all patches in an image to get the final prediction for the entire volume. From the original paper, I assume they choose 10 patches at random from an image during training, but it's not too clear how they pieced everything together during testing.

    Your thoughts on this would be greatly appreciated!

    See: https://github.com/The-AI-Summer/self-attention-cv/blob/33ddf020d2d9fb9c4a4a3b9938383dc9b7405d8c/self_attention_cv/Transformer3Dsegmentation/tranf3Dseg.py#L10

    opened by jmarsil 5
  • ResNet + Pyramid Vision Transformer Version 2

    ResNet + Pyramid Vision Transformer Version 2

    Thank you for your work with a clear explanation. As you know, ViT doesn't work on small datasets and I am implementing ResNet34 with Pyramid Vision Transformer Version 2 to make it better. The architecture of ViT and PVT V2 is completely different. Could you provide me some help to implement it? please

    opened by khawar-islam 3
  • Request for Including UNETR

    Request for Including UNETR

    Thanks for great work ! I noticed nice implementation of this paper (https://arxiv.org/abs/2103.10504) here:

    https://github.com/tamasino52/UNETR/blob/main/unetr.py

    It would be great if this can also be included in your repo, since it comes with lots of other great features. So we can explore more.

    Thanks ~

    opened by Siyuan89 3
  • ImageNet Pretrained TimesFormer

    ImageNet Pretrained TimesFormer

    I see you have recently added the TimesFormer model to this repository. In the paper, they initialize their model weights from ImageNet pretrained weights of ViT. Does your implementation offer this too? Thanks!

    opened by RaivoKoot 3
  • Do the encoder modules incorporate positional encoding?

    Do the encoder modules incorporate positional encoding?

    I am wondering if I use say the LinformerEncoder if I have to add the position encoding or if that's already done? From the source files it doesn't seem to be there, but I'm not sure how to include the position encoding as they seem to need the query which isn't available when just passing data directly to the LinformerEncoder. I very well may be missing something any help would be great. Perhaps an example using positional encoding would be good.

    opened by jfkback 3
  • use AxialAttention on gpu

    use AxialAttention on gpu

    I try to use AxialAttention on gpu, but I get a mistake.Can you give me some tips about using AxialAttention on gpu. Thanks! mistake: RuntimeError: expected self and mask to be on the same device, but got mask on cpu and self on cuda:0

    opened by Iverson-Al 2
  • Axial attention

    Axial attention

    What is the meaning of qkv_channels? https://github.com/The-AI-Summer/self-attention-cv/blob/5246e550ecb674f60df76a6c1011fde30ded7f44/self_attention_cv/axial_attention_deeplab/axial_attention.py#L32

    opened by Jayden9912 1
  • Convolution-Free Medical Image Segmentation using Transformers

    Convolution-Free Medical Image Segmentation using Transformers

    Thank you very much for your contribution. As a novice, I have a doubt. In tranf3dseg, the output of the model is the prediction segmentation of the center patch, so how can I get the segmentation of the whole input image? I am looking forward to any reply.

    opened by WinsaW 1
  • Regression with attention

    Regression with attention

    Hello!

    thanks for sharing this nice repo :)

    I'm trying to use ViT to do regression on images. I'd like to predict 6 floats per image.

    My understanding is that I'd need to simply define the network as

    vit = ViT(img_dim=128,
                   in_channels=3,
                   patch_dim=16,
                   num_classes=6,
                   dim=512)
    

    and during training call

    vit(x)
    

    and compute the loss as MSE instead of CE.

    The network actually runs but it doesn't seem to converge. Is there something obvious I am missing?

    many thanks!

    opened by alemelis 1
  • Segmentation for full image

    Segmentation for full image

    Hi,

    Thank you for your effort and time in implementing this. I have a quick question, I want to get segmentation for full image not just for the middle token, would it be correct to change self.tokens to self.p here:

    https://github.com/The-AI-Summer/self-attention-cv/blob/5246e550ecb674f60df76a6c1011fde30ded7f44/self_attention_cv/Transformer3Dsegmentation/tranf3Dseg.py#L66

    and change this:

    https://github.com/The-AI-Summer/self-attention-cv/blob/5246e550ecb674f60df76a6c1011fde30ded7f44/self_attention_cv/Transformer3Dsegmentation/tranf3Dseg.py#L94

    to

    y = self.mlp_seg_head(y)

    opened by aqibsaeed 0
Releases(1.2.3)
Owner
AI Summer
Learn Deep Learning and Artificial Intelligence
AI Summer
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
Convert Apple NeuralHash model for CSAM Detection to ONNX.

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression.

Asuhariet Ygvar 1.5k Dec 31, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022