text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

Overview

text recognition toolbox

1. 项目介绍

该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。

模型 论文标题 发表年份 模型方法划分
CRNN 《An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition》 2017 CNN+BiLSTM+CTC
GRCNN 《Gated recurrent convolution neural network for OCR》 2017 Gated Recurrent Convulution Layer + BiSTM + CTC
FAN 《Focusing attention: Towards accurate text recognition in natural images》 2017 focusing network+1D attention
SAR 《Show, attend and read: A simple and strong baseline for irregular text recognition》 2019 ResNet+2D attention
DAN 《Decoupled attention network for text recognition》 2020 FCN+convolutional alignment module
SATRN 《On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention》 2020 Transformer

2. 如何使用

2.1 环境要求

torch==1.3.0
numpy==1.17.3
lmdb==0.98
opencv-python==3.4.5.20

2.2 训练

  • 数据准备

首先需要准备训练数据,目前只支持lmdb格式的数据,数据转换的步骤如下:

  1. 准备图片数据集,图片是根据检测框进行切分后的数据
  2. 准备label.txt,标注文件需保持如下的格式
1.jpg 文字检测
2.jpg 文字识别
  1. 进行lmdb格式数据集的转换
python3 tools/create_lmdb_dataset.py --inputPath {图片数据集路径} --gtFile {标注文件路径} --outputPath {lmdb格式数据集保存路径}
  • 配置文件

目前每个模型都单独配备了一个配置文件,这里以CRNN为例, 配置文件主要参数的含义如下:

一级参数 二级参数 参数含义 备注
TrainReader dataloader 自定义的DataLoader类
select_data 选择使用的lmdb格式数据集 默认为'/',即使用{lmdb_sets_dir}路径下所有的lmdb数据集。如果想控制同一个batch里不同数据集的比例,可以配合{batch_ratio}使用,并将数据集名称用'-'进行分割,例如设置成'数据集1-数据集2-数据集3'
batch_ratio 控制在一个batch中,各个lmdb格式数据集的比例 配合{select_data}进行使用,将比例用'-'进行分割,例如设置成'0.3-0.3-0.4'。即数据集1使用batch_size * 0.3的比例,剩余的数据集以此类推。
total_data_usage_ratio 控制使用的整体数据集比例 默认为1.0,即使用全部的数据集
padding 是否对数据进行padding补齐 默认为True,设置为False即采用resize的方式
Global highest_acc_save_type 是否只保存识别率最高的模型 默认为False
resumed_optimizer 是否加载之前保存的optimizer 默认为False
batch_max_length 最大的字符串长度 超过这个字符串长度的训练数据会被过滤掉
eval_batch_step 保存模型的间隔步数
Architecture function 使用的模型 此处为'CRNN'
SeqRNN input_size LSTM输入的尺寸 即backbone输出的通道个数
hidden_size LSTM隐藏层的尺寸
  • 模型训练

完成上述配置后,使用以下命令即可开始模型的训练:

python train.py -c configs/CRNN.yml

2.3 预测

  • 配置文件

同样地,针对模型预测,也都单独配备了一个配置文件,这里以CRNN为例, 需要修改的配置参数如下:

一级参数 二级参数 参数含义 备注
Global pretrain_weights 模型文件路径 剩余配置参数和训练保持一致即可
infer_img 待预测的图片,可以是文件夹或者是图片路径
  • 模型预测

完成上述配置后,使用以下命令即可开始模型的预测:

python predict.py -c configs/CRNN.yml

3. 预训练模型

以下是5个开源的中文自然场景数据集,可以直接根据上述的模型配置进行模型训练:

数据集 网盘地址 备注
一共包括5个自然场景训练集:
ArT_train, LSVT_train, MTWI_train, RCTW17_train, ReCTS_train
以及一个自然场景验证集:ReCTS_val
链接: https://pan.baidu.com/s/1fvExHzeojA_Yhj3_wDflwA
提取码: kzrd
"train"是训练集,"val"是验证集

以下为5个算法的预训练模型,训练的明细请见第4部分里的实验设定:

模型 网盘地址 备注
一共包含5个预训练模型:CRNN.pth, GRCNN.pth, FAN.pth, DAN.pth, SAR.pth
以及一个字典文件:keys.txt
链接: https://pan.baidu.com/s/1IG-1lxytrOqry9c5Nc1GzQ
提取码: k3ij

4. 实验结果

针对目前已复现的5个算法,我用统一的数据集以及参数设定进行了实验对比,实验设定以及实验结果如下:

  • 实验设定
实验设定 明细 备注
训练集 ArT_train:44663
LSVT_train:218552
MTWI_train:79964
RCTW17_train:33342
ReCTS_train:83119
这5个均为开源自然场景数据集,其中做了剔除模糊数据等处理
验证集 ReCTS_val:9231 测试集为从ReCTS中按照9:1比例划分的验证集,注意ReCTS以水平文本居多
batch_size 128
img_shape [1, 32, 256] 尺寸进行等比例放缩,小于256的进行padding,大于256的resize至256
optimizer function: adam
base_lr: 0.001
momentum: 0.9
weight_decay: 1.0e-4
iter 60000 一共训练了60000步,每2000步会进行一次验证
  • 实验结果
算法 最高识别率 最大正则编辑距离 模型大小
CRNN 59.89 0.7959 120M
GRCNN 70.51 0.8597 78M
FAN 75.78 0.8924 764M
SAR 78.13 0.9037 722M
DAN 78.99 0.9064 639M

下图为各个算法在验证集上的识别率,每2000步会进行验证:

fig1

  • 预测结果示例
算法 预测结果 备注
CRNN image-20210121152011971 预测结果均取自验证集识别率最高的模型,
左边一列为预测结果,右边为标注结果
GRCNN image-20210121152134249
FAN image-20210121152239497
SAR image-20210121152325124
DAN image-20210121152407344
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

GD-VCR Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021). Research Questions and Aims: How well can a model perform o

Da Yin 24 Oct 13, 2022
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

217 Jan 03, 2023
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022