Official Code for "Non-deep Networks"

Overview

Non-deep Networks
arXiv:2110.07641
Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun

Overview: Depth is the hallmark of DNNs. But more depth means more sequential computation and higher latency. This begs the question -- is it possible to build high-performing ``non-deep" neural networks? We show that it is. We show, for the first time, that a network with a depth of just 12 can achieve top-1 accuracy over 80% on ImageNet, 96% on CIFAR10, and 81% on CIFAR100. We also show that a network with a low-depth (12) backbone can achieve an AP of 48% on MS-COCO.

If you find our work useful, please consider citing it:

@article{goyal2021nondeep,
  title={Non-deep Networks},
  author={Goyal, Ankit and Bochkovskiy, Alexey and Deng, Jia and Koltun, Vladlen},
  journal={arXiv:2110.07641},
  year={2021}
}

Code Coming Soon!

Comments
  • when will the code of the model be released?

    when will the code of the model be released?

    I am very interested in your research, when will the code of the model be released? I saw on October 23rd that you said it would be released in 4 weeks

    opened by Dr-Goopher 6
  • When will the code be released?

    When will the code be released?

    I am very interested in your work and would like to further study. I hope you can release the code as soon as possible in your busy schedule. Thank you!

    opened by SenShu96 5
  • what is the meaning of 'Shuffle' of fusion block in Fig. A1?

    what is the meaning of 'Shuffle' of fusion block in Fig. A1?

    Hello. Thank you for your great study. I wonder the meaning of 'Shuffle' of fusion block in Fig. A1. Is it pixel shuffle layer? Please let me know the meaning of that.

    Thank you.

    opened by jhcha08 3
  • Question about SSE module

    Question about SSE module

    Hi. Figure 2b shows that there's one 1x1conv in a branch of SSE, how to match the channel of output by 1x1conv with the channel of input after shortcut? If I set the output channel of 1x1conv the same as input, the channels of the outputs by RepVGG block and SSE will not match.

    opened by Tsianmy 2
  • Really faster than ResNet? I am very confused

    Really faster than ResNet? I am very confused

    Hello, my friend, appreciate for your great work! I have tested the code on https://github.com/Pritam-N/ParNet by Pritam-N and change the ResNet code in my model by using your ParNet , but the actual time is quite slow than the paper said. My block size is [64, 128, 256, 512, 2048], and the time of "forward()" is more than 5s average while the Resnet is 0.02s in my device. I have use the time function for every line in the forward(), find that the encode stuff is the main reason. I continue write time.perf_counter() in the encode stuff, find that the "self.stream2_fusion" and "self.stream3_fusion" is the most time user. Do you know why ?

    opened by StonepageVan 1
  •  fusion module, accuracy about cifar100

    fusion module, accuracy about cifar100

    1. what is your shuffle code in your fusion module?
    2. what is your model architecture in cifar-100? I just changed front two downsample modules based on the ParNet for Imagenet in the paper. But the accuracy is lower. And How do you set the LR, MILESTONES and NUM_EPOCH to meet high accuracy?
    opened by qq769852576 2
Owner
Ankit Goyal
Phd Candidate @Princeton | Works in CV and AI
Ankit Goyal
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
A simple, high level, easy-to-use open source Computer Vision library for Python.

ZoomVision : Slicing Aid Detection A simple, high level, easy-to-use open source Computer Vision library for Python. Installation Installing dependenc

Nurettin Sinanoğlu 2 Mar 04, 2022
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022