Discriminative Condition-Aware PLDA

Related tags

Deep LearningDCA-PLDA
Overview

DCA-PLDA

This repository implements the Discriminative Condition-Aware Backend described in the paper:

L. Ferrer, M. McLaren, and N. Brümmer, "A Speaker Verification Backend with Robust Performance across Conditions", in Computer Speech and Language, volume 71, 2021

This backend has the same functional form as the usual probabilistic discriminant analysis (PLDA) backend which is commonly used for speaker verification, including the preprocessing stages. It also integrates the calibration stage as part of the backend, where the calibration parameters depend on an estimated condition for the signal. The condition is internally represented by a very low dimensional vector. See the paper for more details on the mathematical formulation of the backend.

We have found this system to provide great out-of-the-box performance across a very wide range of conditions, when training the backend with a variety of data including Voxceleb, SRE (from the NIST speaker recognition evaluations), Switchboard, Mixer 6, RATS and FVC Australian datasets, as described in the above paper.

The code can also be used to train and evaluate a standard PLDA pipeline. Basically, the initial model before any training epochs is identical to a PLDA system, with an option for weighting the samples during training to compensate for imbalance across training domains.

Further, the current version of the code can also be used to do language detection. In this case, we have not yet explored the use of condition-awereness, but rather focused on a novel hierachical approach, which is described in the following paper:

L. Ferrer, D. Castan, M. McLaren, and A. Lawson, "A Hierarchical Model for Spoken Language Recognition", arXiv:2201.01364, 2021

Example scripts and configuration files to do both speaker verification and language detection are provided in the examples directory.

This code was written by Luciana Ferrer. We thank Niko Brummer for his help with the calibration code in the calibration.py file and for providing the code to do heavy-tail PLDA. The pre-computed embeddings provided to run the example were computed using SRI's software and infrastructure.

We will appreciate any feedback about the code or the approaches. Also, please let us know if you find bugs.

How to install

  1. Clone this repository:

    git clone https://github.com/luferrer/DCA-PLDA.git

  2. Install the requirements:

    pip install -r requirements.txt

  3. If you want to run the example code, download the pre-computed embeddings for the task you want to run from:

    https://sftp.speech.sri.com/forms/DCA-DPLDA

    Untar the file and move (or link) the resulting data/ dir inside the example dir for the task you want to run.

  4. You can then run the run_all script which runs several experiments using different configuration files and training sets. You can edit it to just try a single configuration, if you want. Please, see the top of that script for an explanation on what is run and where the output results end up. The run_all scripts will take a few hours to run (on a GPU) if all configurations are run. A RESULTS file is also provided for comparison. The run_all script should generate similar numbers to those in that file if all goes well.

About the examples

The example dir contains two example recipes, one for speaker verification and one for language detection.

Speaker Verification

The example provided with the repository includes the Voxceleb and FVC Australian subsets of the training data used in the paper, since the other datasets are not freely available. As such, the resulting system will only work well on conditions similar to those present in that data. For this reason, we test the resulting model on SITW and Voxceleb2 test dataset, which are very similar in nature to the Voxceleb data used for training. We also test on a set of FVC speakers which are held-out from training.

Language Detection

The example uses the Voxlingua107 dataset which contains a large number of languages.

How to change the examples to use your own data and embeddings

The example scripts run using embeddings for each task extracted at SRI International using standard x-vector architectures. See the papers cited above for a description of the characteristics of the corresponding embedding extractors. Unfortunately, we are unable to release the embedding extractors, but you should be able to replace these embeddings with any type of speaker or language embeddings (eg, those that can be extracted with Kaldi).

The audio files corresponding to the databases used in the speaker verification example above can be obtained for free:

For the language detection example, the Voxlingua107 audio samples can be obtained from http://bark.phon.ioc.ee/voxlingua107/.

Once you have extracted embeddings for all that data using your own procedure, you can set up all the lists and embeddings in the same way and with the same format (hdf5 or npz in the case of embeddings) as in the example data dir for your task of interest and use the run_all script.

Note on scoring multi-sample enrollment models

For now, for speaker verification, the DCA-PLDA model only knows how to calibrate trials that are given by a comparison of two individual speech waveforms since that is the way we create trials during training. The code in this repo can still score trials with multi-file enrollment models, but it does it in a hacky way. Basically, it scores each enrollment sample against the test sample for the trial and then averages the scores. This works reasonably well but it is not ideal. A generalization to scoring multi-sample enrollment trials within the model is left as future work.

Owner
Luciana Ferrer
Luciana Ferrer
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
🎁 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
Integrated physics-based and ligand-based modeling.

ComBind ComBind integrates data-driven modeling and physics-based docking for improved binding pose prediction and binding affinity prediction. Given

Dror Lab 44 Oct 26, 2022
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022