Applying curriculum to meta-learning for few shot classification

Overview

Curriculum Meta-Learning for Few-shot Classification

We propose an adaptation of the curriculum training framework, applicable to state-of-the-art meta learning techniques for few-shot classification. Curriculum-based training popularly attempts to mimic human learning by progressively increasing the training complexity to enable incremental concept learning. As the meta-learner's goal is learning how to learn from as few samples as possible, the exact number of those samples (i.e. the size of the support set) arises as a natural proxy of a given task's difficulty. We define a simple yet novel curriculum schedule that begins with a larger support size and progressively reduces it throughout training to eventually match the desired shot-size of the test setup. This proposed method boosts the learning efficiency as well as the generalization capability. Our experiments with the MAML algorithm on two few-shot image classification tasks show significant gains with the curriculum training framework. Ablation studies corroborate the independence of our proposed method from the model architecture as well as the meta-learning hyperparameters.

How to reproduce

Our code is based on the learn2learn library. Specifically we start from their MAML implementation and extend with the ideas presented in our paper. Each of the results presented in the paper (incl. Ablation studies) can be reproduced by invoking the main script with appropriate arguments.

Requirements

Install dependencies:

pip install torch
pip install learn2learn

Examples

5 way - 5 shot MiniImagenet using a Convolutional neural network.

# Vanilla, achieves ~ 58% accuracy
python3 curriculum_meta_learning.py --dataset mini-imagenet --multiplier 1 --shot 5 --ways 5

# Ours, achieves ~ 66% accuracy
python3 curriculum_meta_learning.py --dataset mini-imagenet --multiplier 5 --shot 5 --ways 5

5 way - 1 shot OmniGlot using a Fully Connected neural network.

# Vanilla, achieves ~ 90% accuracy
python3 curriculum_meta_learning.py --dataset omniglot --multiplier 1 --shot 1 --ways 5 --fc

# Ours, achieves ~ 94% accuracy
python3 curriculum_meta_learning.py --dataset omniglot --multiplier 5 --shot 1 --ways 5 --fc

Ablation: disable LR annealing or query size adaptation durinng training.

python3 curriculum_meta_learning.py --multiplier 3 --freeze_lr

python3 curriculum_meta_learning.py --multiplier 3 --freeze_l

Ablation: Use a statically larger support size instead of curriculum.

python3 curriculum_meta_learning.py --dataset mini-imagenet --multiplier 5 --shot 5 --ways 5 --freeze_multiplier

Authors

Owner
Stergiadis Manos
Stergiadis Manos
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
HGCAE Pytorch implementation. CVPR2021 accepted.

Hyperbolic Graph Convolutional Auto-Encoders Accepted to CVPR2021 🎉 Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Mess

Junho Cho 37 Nov 13, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023
A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022